Skip to main content

Advertisement

Log in

Chronic hypoxia-induced alterations of key enzymes of glucose oxidative metabolism in developing mouse liver are mTOR dependent

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypoxia is a potent regulator of gene expression and cellular energy metabolism and known to interfere with post-natal growth and development. Although hypoxia can induce adaptive changes in the developing liver, the mechanisms underlying these changes are poorly understood. To elucidate some of the adaptive changes chronic hypoxia induces in the developing liver, we studied the expression of the genes of mammalian target of rapamycin (mTOR) signaling and glucose metabolism, undertook proteomic examination with 2D gel-MS/MS of electron transport chain, and determined activities and protein expression of several key regulatory enzymes of glucose oxidative metabolism. To gain insight into the molecular mechanism underlying hypoxia-induced liver metabolic adaptation, we treated a subset of mice with rapamycin (0.5 mg/kg/day) to inhibit mTOR postnatally. Rapamycin-treated mice showed lower birth weight, lower body weight, and liver growth retardation in a pattern similar to that observed in the hypoxic mice at P30. Rapamycin treatment led to differential impact on the cytoplasmic and mitochondrial pathways of glucose metabolism. Our results suggest a decrease in mTOR activity as part of the mechanisms underlying hypoxia-induced changes in the activities of glycolytic and TCA cycle enzymes in liver. Chronic postnatal hypoxia induces mTOR-dependent differential effects on liver glycolytic and TCA cycle enzymes and as such should be studied further as they have pathophysiological implications in hepatic diseases and conditions in which hypoxia plays a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CS:

Citrate synthase

HK:

Hexokinase

KGDHC:

α-Ketoglutarate dehydrogenase complex

LDH:

Lactate dehydrogenase

mTOR:

Mammalian target of rapamycin

PDH:

Pyruvate dehydrogenase

PDK:

Pyruvate dehydrogenase kinase

PK:

Pyruvate kinase

References

  1. Iadecola C, Salkowski CA, Zhang F, Aber T, Nagayama M, Vogel SN, Ross ME (1999) The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. J Exp Med 189:719–727

    Article  PubMed  CAS  Google Scholar 

  2. Janssens JP, Pautex S, Hilleret H, Michel JP (2000) Respiratory sleep disorders in the elderly. Rev Med Suisse Romande 120:869–879

    PubMed  CAS  Google Scholar 

  3. Mathur R, Cox IJ, Oatridge A, Shephard DT, Shaw RJ, Taylor-Robinson SD (1999) Cerebral bioenergetics in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:1994–1999

    PubMed  CAS  Google Scholar 

  4. Kuroiwa S, Katai N, Yoshimura N (1999) A possible role for p16INK4 in neuronal cell death after retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 40:528–533

    PubMed  CAS  Google Scholar 

  5. Henrion J, Schapira M, Luwaert R, Colin L, Delannoy A, Heller FR (2003) Hypoxic hepatitis: clinical and hemodynamic study in 142 consecutive cases. Medicine 82:392–406

    Article  PubMed  Google Scholar 

  6. Ebert EC (2006) Hypoxic liver injury. Mayo Clin Proc 81:1232–1236

    Article  PubMed  Google Scholar 

  7. Kalaria RN, Fiedler C, Hunsaker JC III, Sparks DL (1993) Synaptic neurochemistry of human striatum during development: changes in sudden infant death syndrome. J Neurochem 60:2098–2105

    Article  PubMed  CAS  Google Scholar 

  8. Naeije R (2003) Hepatopulmonary syndrome and portopulmonary hypertension. Swiss Med Wkly 133:163–169

    PubMed  Google Scholar 

  9. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444

    Article  PubMed  CAS  Google Scholar 

  10. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    Article  PubMed  CAS  Google Scholar 

  11. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  Google Scholar 

  12. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  PubMed  CAS  Google Scholar 

  13. Guillemin K, Krasnow MA (1997) The hypoxic response: huffing and HIFing. Cell 89:9–12

    Article  PubMed  CAS  Google Scholar 

  14. Chavez JC, Agani F, Pichiule P, LaManna JC (2000) Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89:1937–1942

    PubMed  CAS  Google Scholar 

  15. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I (2000) Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 97:2826–2831

    Article  PubMed  CAS  Google Scholar 

  16. Semenza GL (2001) Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 49:614–617

    Article  PubMed  CAS  Google Scholar 

  17. Holness MJ, Sugden MC (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans 31:1143–1151

    Article  PubMed  CAS  Google Scholar 

  18. Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 70:33–75

    Article  PubMed  CAS  Google Scholar 

  19. Heacock CS, Sutherland RM (1990) Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br J Cancer 62:217–225

    Article  PubMed  CAS  Google Scholar 

  20. Farahani R, Kanaan A, Gavrialov O, Brunnert S, Douglas RM, Morcillo P, Haddad GG (2008) Differential effects of chronic intermittent and chronic constant hypoxia on postnatal growth and development. Pediatr Pulmonol 43:20–28

    Article  PubMed  Google Scholar 

  21. Fan LW, Lin S, Pang Y, Lei M, Zhang F, Rhodes PG, Cai Z (2005) Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat. Behav Brain Res 165:80–90

    Article  PubMed  CAS  Google Scholar 

  22. Kanaan A, Farahani R, Douglas RM, Lamanna JC, Haddad GG (2006) Effect of chronic continuous or intermittent hypoxia and reoxygenation on cerebral capillary density and myelination. Am J Physiol Regul Integr Comp Physiol 290:R1105–R1114

    Article  PubMed  CAS  Google Scholar 

  23. Bilali F, Kumar P, Feerick J, Berezin S, Farahani R (2008) Hypoxia-induced hypomyelination in the developing brain is mammalian target of rapamycin-4E-binding protein-1 signaling dependent. Neuroreport 19:635–639

    Article  PubMed  CAS  Google Scholar 

  24. Pettersen EO, Juul NO, Ronning OW (1986) Regulation of protein metabolism of human cells during and after acute hypoxia. Cancer Res 46:4346–4351

    PubMed  CAS  Google Scholar 

  25. D’Angio CT, Finkelstein JN (2000) Oxygen regulation of gene expression: a study in opposites. Mol Genet Metab 71:371–380

    Article  PubMed  Google Scholar 

  26. Prabhakar NR (2001) Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol 90:1986–1994

    Article  PubMed  CAS  Google Scholar 

  27. Webster KA (2003) Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol 206:2911–2922

    Article  PubMed  CAS  Google Scholar 

  28. Arsham AM, Howell JJ, Simon MC (2003) A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem 278:29655–29660

    Article  PubMed  CAS  Google Scholar 

  29. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  30. Lawrence JC Jr, Abraham RT (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22:345–349

    Article  PubMed  CAS  Google Scholar 

  31. Sipula IJ, Brown NF, Perdomo G (2006) Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation. Metabolism 55:1637–1644

    Article  PubMed  CAS  Google Scholar 

  32. Ramanathan A, Schreiber SL (2009) Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 106:22229–22232

    Article  PubMed  CAS  Google Scholar 

  33. Scafidi S, Douglas RM, Farahani R, Banasiak KJ, Haddad GG (2007) Prostaglandin transporter expression in mouse brain during development and in response to hypoxia. Neuroscience 146:1150–1157

    Article  PubMed  CAS  Google Scholar 

  34. Wu TL (2006) Two-dimensional difference gel electrophoresis. Methods Mol Biol 328:71–95

    PubMed  CAS  Google Scholar 

  35. Clark JB, Lai JCK (1989) Glycolytic, tricarboxylic acid cycle and related enzymes in brain. In: Boulton AA, Baker BG, Butterworth RF (eds) NeuroMethods. Humana, Clifton, pp 233–281

  36. Dukhande VV, Isaac AO, Chatterji T, Lai JC (2009) Reduced glutathione regenerating enzymes undergo developmental decline and sexual dimorphism in the rat cerebral cortex. Brain Res 1286:19–24

    Article  PubMed  CAS  Google Scholar 

  37. Gwak GY, Yoon JH, Kim KM, Lee HS, Chung JW, Gores GJ (2005) Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. J Hepatol 42:358–364

    Article  PubMed  CAS  Google Scholar 

  38. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–32537

    Article  PubMed  CAS  Google Scholar 

  39. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162

    Article  PubMed  CAS  Google Scholar 

  40. Ebert BL, Firth JD, Ratcliffe PJ (1995) Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem 270:29083–29089

    Article  PubMed  CAS  Google Scholar 

  41. Vannucci SJ, Reinhart R, Maher F, Bondy CA, Lee WH, Vannucci RC, Simpson IA (1998) Alterations in GLUT1 and GLUT3 glucose transporter gene expression following unilateral hypoxia-ischemia in the immature rat brain. Brain Res Dev Brain Res 107:255–264

    Article  PubMed  CAS  Google Scholar 

  42. Yecies JL, Manning BD (2011) mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med 89:221–228

    Article  PubMed  CAS  Google Scholar 

  43. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  44. Coutant A, Rescan C, Gilot D, Loyer P, Guguen-Guillouzo C, Baffet G (2002) PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survival. Hepatology 36:1079–1088

    Article  PubMed  CAS  Google Scholar 

  45. Lai JC, White BK, Buerstatte CR, Haddad GG, Novotny EJ Jr, Behar KL (2003) Chronic hypoxia in development selectively alters the activities of key enzymes of glucose oxidative metabolism in brain regions. Neurochem Res 28:933–940

    Article  PubMed  CAS  Google Scholar 

  46. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    Article  PubMed  CAS  Google Scholar 

  47. Reiter AK, Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2005) Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab 288:E980–E988

    Article  PubMed  CAS  Google Scholar 

  48. Tinton SA, Buc-Calderon PM (1999) Hypoxia increases the association of 4E-binding protein 1 with the initiation factor 4E in isolated rat hepatocytes. FEBS Lett 446:55–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Linda Mattiace and Melissa Kelly for technical assistance. This study was supported by grants from NIH/NINDS, the Gastroenterology Division, Pediatrics Department, Maria Fareri Children’s Hospital, New York Medical College and Idaho Biomedical Research Infrastructure Network (NIH NCRR BRINIP20RR016454).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Farahani.

Additional information

Vikas V. Dukhande and Girish C. Sharma contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dukhande, V.V., Sharma, G.C., Lai, J.C.K. et al. Chronic hypoxia-induced alterations of key enzymes of glucose oxidative metabolism in developing mouse liver are mTOR dependent. Mol Cell Biochem 357, 189–197 (2011). https://doi.org/10.1007/s11010-011-0889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0889-z

Keywords

Navigation