Skip to main content
Log in

Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chemoresistance is a key cause of treatment failure in colon cancer. MiR-22 is a tumor-suppressing microRNA. To explore whether miR-22 is an important player in the development of chemoresistance in colon cancer, we overexpressed miR-22 and subsequently tested its role in cell proliferation, apoptosis, survival, and associated signaling in p53-mutated HT-29 and HCT-15 cells, and p53 wild-type HCT-116 cells. We further investigated the role of miR-22 on cytotoxicity of paclitaxel in both the p53-mutated and p53 wild-type colon cancer cells. Results showed that HT-29 and HCT-15 cells were resistant to paclitaxel-induced cytotoxicity, which normally inhibits cell proliferation and survival, and induces apoptosis. Conversely, HCT-116 was relatively sensitive to the cytotoxicity of paclitaxel. Overexpression of miR-22 significantly decreased cell proliferation and survival, and induced cell apoptosis in the p53-mutated colon cancer cells, but played no role in the p53 wild-type cells. Importantly, miR-22 overexpression enhanced the cytotoxic role of paclitaxel in p53-mutated HT-29 and HCT-15 cells, but not in p53 wild-type HCT-116 cell. We further demonstrated that the tumor-suppressive role of miR-22 in p53-mutated colon cancer cells was mediated by upregulating PTEN expression, which negatively regulated Akt phosphorylation at Ser473 and MTDH expression, and subsequently increased Bax and active caspase-3 levels. Our study is the first to identify the tumor-suppressive role of miR-22 and its associated signaling in the p53-mutated colon cancer cells and highlighted the chemosensitive role of miR-22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. “Cancer”. National Cancer Institute. (2009) http://www.cancer.gov/cancertopics

  2. Xu AG, Yu ZJ, Jiang B, Wang XY, Zhong XH, Liu JH, Lou QY, Gan AH (2010) Colorectal cancer in Guangdong Province of China: a demographic and anatomic survey. World J Gastroenterol 16:960–965

    Article  PubMed  Google Scholar 

  3. Ades S (2009) Adjuvant chemotherapy for colon cancer in the elderly: moving from evidence to practice. Oncology 23:162–167

    PubMed  Google Scholar 

  4. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  PubMed  CAS  Google Scholar 

  5. Dai A, Huang Y, Sadee W (2004) Growth factor signaling and resistance to cancer chemotherapy. Curr Top Med Chem 4:1347–1356

    Article  PubMed  CAS  Google Scholar 

  6. De Ligio JT, Velkova A, Zorio DA, Monteiro AN (2009) Can the status of the breast and ovarian cancer susceptibility gene 1 product (BRCA1) predict response to taxane-based cancer therapy? Anticancer Agents Med Chem 9:543–549

    PubMed  Google Scholar 

  7. Shitara K, Oze I, Mizota A, Kondo C, Nomura M, Yokota T, Takahari D, Ura T, Yuki S, Komatsu Y, Matsuo K, Muro K (2010) Randomized phase II study comparing dose escalated weekly paclitaxel vs. standard dose weekly paclitaxel for patients with previously treated advanced gastric cancer. Jpn J Clin Oncol [Epub ahead of print]

  8. Hiro J, Inoue Y, Toiyama Y, Yoshiyama S, Tanaka K, Mohri Y, Miki C, Kusunoki M (2010) Possibility of paclitaxel as an alternative radiosensitizer to 5-fluorouracil for colon cancer. Oncol Rep 24:1029–1034

    PubMed  CAS  Google Scholar 

  9. Skobeleva N, Menon S, Weber L, Golemis EA, Khazak V (2007) In vitro and in vivo synergy of MCP compounds with mitogen-activated protein kinase pathway- and microtubule-targeting inhibitors. Mol Cancer Ther 6:898–906

    Article  PubMed  CAS  Google Scholar 

  10. Haldar S, Jena N, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92:4507–4511

    Article  PubMed  CAS  Google Scholar 

  11. Djeu JY, Wei S (2009) Clusterin and chemoresistance. Adv Cancer Res 105:77–92

    Article  PubMed  CAS  Google Scholar 

  12. Argov M, Bod T, Batra S, Margalit R (2010) Novel steroid carbamates reverse multidrug-resistance in cancer therapy and show linkage among efficacy, loci of drug action and P-glycoprotein’s cellular localization. Eur J Pharm Sci 41:53–59

    Article  PubMed  CAS  Google Scholar 

  13. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  14. Bagga S, Pasquinelli AE (2006) Identification and analysis of microRNAs. Genet Eng (NY) 27:1–20

    Article  CAS  Google Scholar 

  15. Bar N, Dikstein R (2010) miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS One 5:e10859

    Article  PubMed  Google Scholar 

  16. Xiong J, Du Q, Liang Z (2010) Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 29:4980–4988

    Article  PubMed  CAS  Google Scholar 

  17. Ting Y, Medina DJ, Strair RK, Schaar DG (2010) Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun 394:606–611

    Article  PubMed  CAS  Google Scholar 

  18. Mi J, Zhang X, Rabbani ZN, Liu Y, Su A, Vujaskovic Z, Kontos CD, Sullenger BA, Clary BM (2006) H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acids Res 34:3577–3584

    Article  PubMed  CAS  Google Scholar 

  19. Zhang X, Li Y, Huang Q, Wang H, Yan B, Dewhirst MW, Li CY (2003) Increased resistance of tumor cells to hyperthermia mediated by integrin-linked kinase. Clin Cancer Res 9:1155–1160

    PubMed  CAS  Google Scholar 

  20. McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, Frame MC (2007) Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res 67:5248–5257

    Article  PubMed  CAS  Google Scholar 

  21. McDonald GT, Sullivan R, Paré GC, Graham CH (2010) Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression. Exp Cell Res 316:3197–3206

    Article  PubMed  CAS  Google Scholar 

  22. Huang WC, Hung MC (2009) Induction of Akt activity by chemotherapy confers acquired resistance. J Formos Med Assoc 108:180–194

    Article  PubMed  CAS  Google Scholar 

  23. Li Z, Thiele CJ (2007) Targeting Akt to increase the sensitivity of neuroblastoma to chemotherapy: lessons learned from the brain-derived neurotrophic factor/TrkB signal transduction pathway. Expert Opin Ther Targets 11:1611–1621

    Article  PubMed  CAS  Google Scholar 

  24. Zhang X, Mi J, Wetsel WC, Davidson C, Xiong X, Chen Q, Ellinwood EH, Lee TH (2006) PI3 kinase is involved in cocaine behavioral sensitization and its reversal with brain area specificity. Biochem Biophys Res Commun 340:1144–1150

    Article  PubMed  CAS  Google Scholar 

  25. Sasabe E, Tatemoto Y, Li D, Yamamoto T, Osaki Y (2005) Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci 96:394–402

    Article  PubMed  CAS  Google Scholar 

  26. Blanco-Aparicio C, Renner Q, Leal JF, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386

    Article  PubMed  CAS  Google Scholar 

  27. Yin Y, Shen WH (2008) PTEN a new guardian of the genome. Oncogene 27:5443–5453

    Google Scholar 

  28. Hu G, Wei Y, Kang Y (2009) The multifaceted role of MTDH/AEG-1 in cancer progression. Clin Cancer Res 15:5615–5620

    Google Scholar 

  29. Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, Li F, Reiss M, Au JT, Haffty BG, Kang Y (2009) MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15:9–20

    Article  PubMed  CAS  Google Scholar 

  30. Emdad L, Sarkar D, Su ZZ, Randolph A, Boukerche H, Valerie K, Fisher PB (2006) Activation of the nuclear factor kappaB pathway by astrocyte elevated gene-1: implications for tumor progression and metastasis. Cancer Res 66:1509–1516

    Article  PubMed  CAS  Google Scholar 

  31. Lee SG, Su ZZ, Emdad L, Sarkar D, Fisher PB (2006) Astrocyte elevated gene-1 (AEG-1) is a target gene of oncogenic Ha-ras requiring phosphatidylinositol 3-kinase and c-Myc. Proc Natl Acad Sci USA 103:17390–17395

    Article  PubMed  CAS  Google Scholar 

  32. Lee SG, Su ZZ, Emdad L, Sarkar D, Franke TF, Fisher PB (2008) Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling. Oncogene 27:1114–1121

    Article  PubMed  CAS  Google Scholar 

  33. Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T, Gebbia N (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23:7518–7528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Hi-Tech Project of China (Grant Number: AA021810, AA021907 to YC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhang, Y., Zhao, J. et al. Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol Cell Biochem 357, 31–38 (2011). https://doi.org/10.1007/s11010-011-0872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0872-8

Keywords

Navigation