Molecular and Cellular Biochemistry

, Volume 354, Issue 1–2, pp 189–197 | Cite as

Cellular and molecular mechanisms of anti-inflammatory effect of Aflapin: a novel Boswellia serrata extract

  • Krishanu Sengupta
  • Jayaprakash N. Kolla
  • Alluri V. Krishnaraju
  • Nandini Yalamanchili
  • Chirravuri V. Rao
  • Trimurtulu Golakoti
  • Smriti Raychaudhuri
  • Siba P. RaychaudhuriEmail author


There is significant number of evidences suggesting the anti-inflammatory properties of gum resin extracts of Boswellia serrata containing 3-O-acetyl-11-keto-β-boswellic acid (AKBA) and their promising potential as therapeutic interventions against inflammatory diseases such as osteoarthritis (OA). Unfortunately, the poor bioavailability of AKBA following oral administration might limit the anti-inflammatory efficacy of standardized Boswellia extract(s). To address this issue, we describe a novel composition called Aflapin, which contains B. serrata extract enriched in AKBA and non-volatile oil portion of B. serrata gum resin. Our observations show that the availability of AKBA in systemic circulation of experimental animals is increased by 51.78% in Aflapin-supplemented animals, in comparison with that of 30% AKBA standardized extract or BE-30 (5-Loxin®). Consistently, Aflapin confers better anti-inflammatory efficacy in Freund’s Complete Adjuvant (FCA)-induced inflammation model of Sprague–Dawley rats. Interestingly, in comparison with BE-30, Aflapin® also provides significantly better protection from IL-1β-induced death of human primary chondrocytes and improves glycosaminoglycans production in human chondrocytes. In Tumor necrosis factor alpha (TNFα)-induced human synovial cells, the inhibitory potential of Aflapin (IC50 44.736 ng/ml) on matrix metalloproteinase-3 (MMP-3) production is 14.83% better than that of BE-30 (IC50 52.528 ng/ml). In summary, our observations collectively suggest that both the Boswellia products, BE-30 (5-Loxin®) and Aflapin, exhibit powerful anti-inflammatory efficacy and anti-arthritic potential. In particular, in comparison with BE-30, Aflapin provides more potential benefits in recovering articular cartilage damage or protection from proteolytic degradation due to inflammatory insult in arthritis such as osteoarthritis or rheumatoid arthritis.


3-O-acetyl-11-keto-β-boswellic acid Aflapin Boswellia serrata Chondrocytes Matrix metalloproteinase-3 Osteoarthritis 



We sincerely thank Sri G Ganga Raju, Chairman; Mr. G Rama Raju, Director; and Mr. B. Kiran, CEO of Laila Group of Industries, India for their generous support and encouragements. We also thank Mr. K Gopal Rao for his help in analyzing serum samples for the bio-availability study. This study was supported by Laila Nutraceuticals, Vijayawada, India.

Competing interests

The authors declare there are no competing interests.


  1. 1.
    Reddy GK, Chandrasekhar G, Dhar SC (1989) Studies on the metabolism of glycosaminoglycans under the influence of new herbal anti-inflammatory agents. Biochem Pharmacol 38:3527–3534CrossRefPubMedGoogle Scholar
  2. 2.
    Safayhi H, Mack T, Sabiera J, Anazodo MI, Subramanian LR, Ammon HP (1992) Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261:1143–1146PubMedGoogle Scholar
  3. 3.
    Ammon HP, Safayhi H, Mack T, Sabieraj J (1993) Mechanism of anti-inflammatory actions of curcumin and boswellic acids. J Ethnopharmacol 38:113–119CrossRefPubMedGoogle Scholar
  4. 4.
    Safayhi H, Sailer ER, Ammon HP (1995) Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol Pharmacol 47:1212–1216PubMedGoogle Scholar
  5. 5.
    Sailer ER, Subramanian LR, Rall B, Hoernlein RF, Ammon HPT, Safayhi H (1996) Acetyl-11-keto-beta-boswellic acid: structure requirement for binding and 5-lipoxygenase inhibitory activity. Br J Pharmacol 117:615–618PubMedGoogle Scholar
  6. 6.
    Gupta I, Gupta V, Parihar A, Gupta S, Ludtke R, Safayhi H, Ammon HP (1998) Effect of Boswellia serrata gum resin in patients with bronchial asthma: results of double blind, placebo controlled, 6-week clinical study. Eur J Med Res 3:511–514PubMedGoogle Scholar
  7. 7.
    Gupta I, Parihar A, Malhotra P, Gupta S, Ludtke R, Safayhi H, Ammon HP (2001) Effect of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med 67:391–395CrossRefPubMedGoogle Scholar
  8. 8.
    Kimmatkar N, Thawani V, Hingorani I, Khiyani R (2003) Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee-A randomized double blind placebo controlled trial. Phytomedicine 10:3–7CrossRefPubMedGoogle Scholar
  9. 9.
    Gokaraju G, Gokaraju R, Gottumukkala VS, Golakoti T, Pratha S. Process for producing a fraction enriched up to 100% 3-O-acetyl-11-keto-beta boswellic acid from an extract containing a mixture of boswellic acid. Indian Patent # 205269Google Scholar
  10. 10.
    Roy S, Khanna S, Shah H, Rink C, Phillips C, Preuss HG, Subbaraju GV, Trimurtulu G, Krishnaraju AV, Bagchi M, Bagchi D, Sen CK (2005) Human genome screen to identify the genetic basis of the anti-inflammatory effects of Boswellia in micro vascular endothelial cells. DNA Cell Biol 24:244–255CrossRefPubMedGoogle Scholar
  11. 11.
    Roy S, Khanna S, Krishnaraju AV, Subbaraju GV, Yasmin T, Bagchi D, Sen CK (2006) Regulation of vascular responses to inflammation: inducible matrix metalloproteinase-3 expression in human microvascular endothelial cells is sensitive to anti-inflammatory Boswellia. Antiox Redox Signal 3&4:653–660Google Scholar
  12. 12.
    Sengupta K, Golakoti T, Marasetti A, Tummala T, Ravada S, Krishnaraju A, Siba P, Raychaudhuri SP (2009) 30% 3-O-acetyl-11-keto-β-boswellic acid inhibits TNFα production and blocks MAPK/NFκB activation in lipopolysaccharide induced THP-1 human monocytes. J Food Lipids 16:325–344CrossRefGoogle Scholar
  13. 13.
    Lalithakumari K, Krishnaraju AV, Sengupta K, Subbaraju GV, Chatterjee A (2006) Safety and toxicological evaluation of a novel, standardized 3-O-Acetyl-b-Boswellic Acid (AKBA)-enriched Boswellia serrata extract (5-Loxin®). Toxicol Mech Methods 16:199–226CrossRefPubMedGoogle Scholar
  14. 14.
    Sengupta K, Alluri KV, Satish AR, Mishra S, Golakoti T, Sarma KV, Dey D, Raychaudhuri SP (2008) A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin® for treatment of osteoarthritis of the knee. Arthr Res Ther 10(4):R85CrossRefGoogle Scholar
  15. 15.
    Abdel Tawab M, Kaunzinger A, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2001) Development of a high-performance liquid chromatographic method for the determination of 11-keto-β-boswellic acid in human plasma. J Chromatogr Biomed Appl 761:221–227CrossRefGoogle Scholar
  16. 16.
    Buchele B, Simmet T (2003) Analysis of 12 different pentacyclic triterpenic acids from frankincense in human plasma by high-performance liquid chromatography and photodiode array detection. J Chromatogr B 795:355–362CrossRefGoogle Scholar
  17. 17.
    Sharma S, Thawani V, Hingorani L, Shrivastava M, Bhate VR, Khiyani R (2004) Pharmacokinetic study of 11-keto-β-boswellic acid. Phytomedicine 11:1255–1260CrossRefGoogle Scholar
  18. 18.
    Sterk V, Buchele B, Simmet T (2004) Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med 70:1155–1160CrossRefPubMedGoogle Scholar
  19. 19.
    Kruger P, Daneshfar R, Eckert GP, Klein J, Volmer DA, Bahr U, Muller WE, Karas M, Schubert-Zsilavecz M, Abdel Tawab M (2008) Metabolism of boswellic acids in vitro and in vivo. Drug Metab Depos 36:1135–1142CrossRefGoogle Scholar
  20. 20.
    Lunstrum GP, Keene DR, Weksler NB, Cho YJ, Cornwall M, Horton WA (1999) Chondrocyte differentiation in a rat mesenchymal cell line. J Histochem Cytochem 47(1):1–6CrossRefPubMedGoogle Scholar
  21. 21.
    Tyler JA (1985) Articular cartilage cultured with catabolin (pig interleukin 1) synthesizes decreased number of normal proteoglycan molecules. Biochem J 227:869–878PubMedGoogle Scholar
  22. 22.
    Benton HP, Tyler JA (1988) Inhibition of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Comm 154:421–428CrossRefPubMedGoogle Scholar
  23. 23.
    den Berg WB, de Loo AAJ, Zwarts WA, Otterness IG (1988) Effects of murine recombinant IL-1 intact homologous articular cartilage: quantitative and autoradiographic study. Ann Rheum Dis 47:855–863CrossRefPubMedGoogle Scholar
  24. 24.
    Jarvinen TAH, Moilanen T, Jarvinen TLN, Moilanen E (1995) Nitric oxide mediates interleukin-1 induced inhibition of glycosaminoglycan synthesis in rat articular cartilage. Mediat Inflamm 4:107–111CrossRefGoogle Scholar
  25. 25.
    Safayhi H, Rall B, Sailer ER, Ammon HPT (1997) Inhibition by boswellic acids of human leukocyte elastase. J Pharmacol Exp Ther 281:460–463PubMedGoogle Scholar
  26. 26.
    Syrovets T, Buchele B, Krauss C, Laumonnier Y, Simmet T (2005) Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-α induction in monocytes by direct interaction with IkB kinases. J Immunol 174:498–506PubMedGoogle Scholar
  27. 27.
    Poeckel D, Werz O (2006) Boswellic acids: biological actions and molecular targets. Curr Med Chem 13:3359–3369CrossRefPubMedGoogle Scholar
  28. 28.
    Mitrovic DM, Quintero M, Stankovic A, Ruckeweart A (1983) Cell density of adult human femoral condylar articular cartilage: joints with normal and fibrillated surfaces. Lab Invest 49:309–316PubMedGoogle Scholar
  29. 29.
    Bendele AM, White SL (1987) Early histopathologic and ultrastructural alterations in femorotibial joints of partial medial meniscectomized guinea pigs. Vet Pathol 24:436–443PubMedGoogle Scholar
  30. 30.
    Hashimoto S, Ochs RL, Komiya S, Lotz M (1998) Linkage of chondrocytes apoptosis and cartilage degradation in human osteoarthritis. Arthr Rheum 41:1632–1638CrossRefGoogle Scholar
  31. 31.
    Blanco FJ, Guitian R, Vazquez-Martul E, de Toro FJ, Galdo F (1998) Osteoarthritis chondrocytes die by apoptosis: a possible pathway for osteoarthritis pathology. Arthr Rheum 41:284–289CrossRefGoogle Scholar
  32. 32.
    Stadler J, Stefanovic-Racic M, Billiar TR, Curran RD, McIntyre LA, Georgescu HI, Simmons RL, Evans CH (1991) Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol 147:3915–3920PubMedGoogle Scholar
  33. 33.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  34. 34.
    van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM (1994) A tetrazolium based colorimetric MTT assay to quantitate human monocytes mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174:311–320CrossRefPubMedGoogle Scholar
  35. 35.
    Benton HP, Tyler JA (1988) Inhibition of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun 154:421–428CrossRefPubMedGoogle Scholar
  36. 36.
    Martel-Pelletier J, Pelletier JP (1996) Wanted-The collagenase responsible for the destruction of the collagen network in human cartilage!. Br J Rheumatol 35:818–820CrossRefPubMedGoogle Scholar
  37. 37.
    Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C et al (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545CrossRefPubMedGoogle Scholar
  38. 38.
    Poole AR (1997) Arthritis and allied conditions. In: Koopman WJ (ed) A textbook of rheumatology. Williams and Wilkins, Baltimore, pp 255–308Google Scholar
  39. 39.
    Arend WP, Dayer JM (1990) Cytokines and cytokine inhibitors antagonists in rheumatoid arthritis. Arthr Rheum 33:305–315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Krishanu Sengupta
    • 1
  • Jayaprakash N. Kolla
    • 1
  • Alluri V. Krishnaraju
    • 2
  • Nandini Yalamanchili
    • 2
  • Chirravuri V. Rao
    • 3
  • Trimurtulu Golakoti
    • 3
  • Smriti Raychaudhuri
    • 4
  • Siba P. Raychaudhuri
    • 4
    Email author
  1. 1.Cellular and Molecular Biology DivisionLaila Impex R&D CenterVijayawadaIndia
  2. 2.Pharmacology DivisionLaila Impex R&D CenterVijayawadaIndia
  3. 3.Drug Discovery and Development DivisionLaila Impex R&D CenterVijayawadaIndia
  4. 4.Division of Rheumatology, Department of Medicine, Allergy and Immunology, School of MedicineUC Davis and VA Medical Center SacramentoMatherUSA

Personalised recommendations