Skip to main content
Log in

Expression of CD38 with intracellular enzymatic activity: a possible explanation for the insulin release induced by intracellular cADPR

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CD38 is a transmembrane glycoprotein expressed in multiple cell types, including pancreatic β cells. It can serve as an enzyme that catalyzes the metabolism of two different Ca2+-mobilizing compounds, cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate. One of these metabolites, cADPR, is known to be involved in glucose-induced insulin secretion from pancreatic β cells. Although the essential role of CD38 for endogenous cADPR synthesis has been established, the relationship between the proposed extracellular enzymatic activity of CD38 and the intracellular Ca2+ modulation caused by the intracellular cADPR accumulation has not yet been fully explained. For a better understanding of the role of CD38 in the insulin secretion machinery, analysis of the intracellular localization of this molecule in pancreatic β cells is essential. In an attempt to provide a method to probe the N-terminal and C-terminal of CD38 separately, we generated an insulin-secreting MIN6 murine pancreatic β cell line expressing a human CD38 bearing an N-terminal FLAG epitope tag. We found a weak but consistent expression of the FLAG epitope outside of the cells, indicating the presence of a small amount of CD38 with cytoplasmic enzymatic activity. MIN6 cells transfected with human CD38 exhibited increased glucose-induced insulin release. In addition, anti-FLAG cross-linking further enhanced the insulin release, suggesting that the N-terminal of CD38 expressed on the cell surface functions as a receptor for an unknown ligand and triggers positive signals for insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehta K, Shahid U, Malavasi F (1996) Human CD38, a cell-surface protein with multiple functions. FASEB J 10:1408–1417

    PubMed  CAS  Google Scholar 

  2. Campana D, Suzuki T, Todisco E, Kitanaka A (2000) CD38 in hematopoiesis. Chem Immunol 75:169–188

    Article  PubMed  CAS  Google Scholar 

  3. Fernàndez JE, Deaglio S, Donati D, Beusan IS, Corno F, Aranega A, Forni M, Falini B, Malavasi F (1998) Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues. J Biol Regul Homeost Agents 12:81–91

    PubMed  Google Scholar 

  4. Lee HC (2000) Enzymatic functions and structures of CD38 and homologs. Chem Immunol 75:39–59

    Article  PubMed  CAS  Google Scholar 

  5. Mallone R, Ortolan E, Pinach S, Volante M, Zanone MM, Bruno G, Baj G, Lohmann T, Cavallo-Perin P, Malavasi F (2002) Anti-CD38 autoantibodies: characterisation in new-onset type I diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies. Diabetologia 45:1667–1677

    Article  PubMed  CAS  Google Scholar 

  6. Mallone R, Perin PC (2006) Anti-CD38 autoantibodies in type? diabetes. Diabetes Metab Res Rev 22:284–294

    Article  PubMed  CAS  Google Scholar 

  7. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886

    Article  PubMed  CAS  Google Scholar 

  8. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF, Lee HC (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059

    Article  PubMed  CAS  Google Scholar 

  9. Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, Lee HC, De Flora A (1993) A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun 196:1459–1465

    Article  PubMed  CAS  Google Scholar 

  10. Lee HC, Aarhus R (1995) A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 270:2152–2157

    Article  PubMed  CAS  Google Scholar 

  11. Lee HC (2006) Structure and enzymatic functions of human CD38. Mol Med 12:317–323

    Article  PubMed  CAS  Google Scholar 

  12. Lee HC (2001) Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol 41:317–345

    Article  PubMed  Google Scholar 

  13. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708

    Article  PubMed  CAS  Google Scholar 

  14. Kitanaka A, Ito C, Nishigaki H, Campana D (1996) CD38-mediated growth suppression of B-cell progenitors requires activation of phosphatidylinositol 3-kinase and involves its association with the protein product of the c-cbl proto-oncogene. Blood 88:590–598

    PubMed  CAS  Google Scholar 

  15. Kitanaka A, Suzuki T, Ito C, Nishigaki H, Coustan-Smith E, Tanaka T, Kubota Y, Campana D (1999) CD38-mediated signaling events in murine pro-B cells expressing human CD38 with or without its cytoplasmic domain. J Immunol 162:1952–1958

    PubMed  CAS  Google Scholar 

  16. Kitanaka A, Ito C, Coustan-Smith E, Campana D (1997) CD38 ligation in human B cell progenitors triggers tyrosine phosphorylation of CD19 and association of CD19 with lyn and phosphatidylinositol 3-kinase. J Immunol 159:184–192

    PubMed  CAS  Google Scholar 

  17. Kumagai M, Coustan-Smith E, Murray DJ, Silvennoinen O, Murti KG, Evans WE, Malavasi F, Campana D (1995) Ligation of CD38 suppresses human B lymphopoiesis. J Exp Med 181:1101–1110

    Article  PubMed  CAS  Google Scholar 

  18. Todisco E, Suzuki T, Srivannaboon K, Coustan-Smith E, Raimondi SC, Behm FG, Kitanaka A, Campana D (2000) CD38 ligation inhibits normal and leukemic myelopoiesis. Blood 95:535–542

    PubMed  CAS  Google Scholar 

  19. Okamoto H (1999) The CD38-cyclic ADP-ribose signaling system in insulin secretion. Mol Cell Biochem 193:115–118

    Article  PubMed  CAS  Google Scholar 

  20. Kato I, Takasawa S, Akabane A, Tanaka O, Abe H, Takamura T, Suzuki Y, Nata K, Yonekura H, Yoshimoto T, Okamoto H (1995) Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic β cells. Enhanced insulin secretion in CD38-expressing transgenic mice. J Biol Chem 270:30045–30050

    Article  PubMed  CAS  Google Scholar 

  21. Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S, Okamoto H (1999) CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion. J Biol Chem 274:1869–1872

    Article  PubMed  CAS  Google Scholar 

  22. De Flora A, Guida L, Franco L, Zocchi E (1997) The CD38/cyclic ADP-ribose system: a topological paradox. Int J Biochem Cell Biol 29:1149–1166

    Article  PubMed  Google Scholar 

  23. Okamoto H, Takasawa S (2002) Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in β-cells. Diabetes 51:S462–S473

    Article  PubMed  CAS  Google Scholar 

  24. Varadi A, Rutter GA (2002) Dynamic imaging of endoplasmic reticulum Ca2+ concentration in insulin-secreting MIN6 cells using recombinant targeted cameleons: roles of sarco (endo) plasmic reticulum Ca2+-ATPase (SERCA)-2 and ryanodine receptors. Diabetes 51:S190–S201

    Article  PubMed  CAS  Google Scholar 

  25. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M, Ohsaga A, Sato K, Shirato K, Okamoto H, Maruyama Y (2001) Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J Biol Chem 276:649–655

    Article  PubMed  CAS  Google Scholar 

  26. Ikehata F, Satoh J, Nata K, Tohgo A, Nakazawa T, Kato I, Kobayashi S, Akiyama T, Takasawa S, Toyota T, Okamoto H (1998) Autoantibodies against CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) that impair glucose-induced insulin secretion in noninsulin-dependent diabetes patients. J Clin Invest 102:395–401

    Article  PubMed  CAS  Google Scholar 

  27. Pupilli C, Giannini S, Marchetti P, Lupi R, Antonelli A, Malavasi F, Takasawa S, Okamoto H, Ferrannini E (1999) Autoantibodies to CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in Caucasian patients with diabetes: effects on insulin release from human islets. Diabetes 48:2309–2315

    Article  PubMed  CAS  Google Scholar 

  28. Antonelli A, Baj G, Marchetti P, Fallahi P, Surico N, Pupilli C, Malavasi F, Ferrannini E (2001) Human anti-CD38 autoantibodies raise intracellular calcium and stimulate insulin release in human pancreatic islets. Diabetes 50:985–991

    Article  PubMed  CAS  Google Scholar 

  29. Zocchi E, Franco L, Guida L, Piccini D, Tacchetti C, De Flora A (1996) NAD+-dependent internalization of the transmembrane glycoprotein CD38 in human Namalwa B cells. FEBS Lett 396:327–332

    Article  PubMed  CAS  Google Scholar 

  30. Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A, De Flora A (2001) Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J Biol Chem 276:21642–21648

    PubMed  CAS  Google Scholar 

  31. Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJ, Huang CL, Epstein S, Lai FA, Avadhani NG, Zaidi M (1999) A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nat Cell Biol 1:409–414

    Article  PubMed  CAS  Google Scholar 

  32. Khoo KM, Chang CF (2002) Identification and characterization of nuclear CD38 in the rat spleen. Int J Biochem Cell Biol 34:43–54

    Article  PubMed  CAS  Google Scholar 

  33. da Silva CP, Schweitzer K, Heyer P, Malavasi F, Mayr GW, Guse AH (1998) Ectocellular CD38-catalyzed synthesis and intracellular Ca2+-signalling activity of cyclic ADP-ribose in T-lymphocytes are not functionally related. FEBS Lett 439:291–296

    Article  PubMed  CAS  Google Scholar 

  34. Moreno-García ME, Sumoza-Toledo A, Lund FE, Santos-Argumedo L (2005) Localization of CD38 in murine B lymphocytes to plasma but not intracellular membranes. Mol Immunol 42:703–711

    Article  PubMed  Google Scholar 

  35. Marchetti P, Antonelli A, Lupi R, Marselli L, Fallahi P, Nesti C, Baj G, Ferrannini E (2002) Prolonged in vitro exposure to autoantibodies against CD38 impairs the function and survival of human pancreatic islets. Diabetes 51:S474–S477

    Article  PubMed  CAS  Google Scholar 

  36. Liu Q, Kriksunov IA, Graeff R, Lee HC, Hao Q (2007) Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38. J Biol Chem 282:5853–5861

    Article  PubMed  CAS  Google Scholar 

  37. Liu Q, Kriksunov IA, Moreau C, Graeff R, Potter BV, Lee HC, Hao Q (2007) Catalysis-associated conformational changes revealed by human CD38 complexed with a non-hydrolyzable substrate analog. J Biol Chem 282:24825–24832

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kitanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, Y., Kitanaka, A., Mihara, K. et al. Expression of CD38 with intracellular enzymatic activity: a possible explanation for the insulin release induced by intracellular cADPR. Mol Cell Biochem 352, 293–299 (2011). https://doi.org/10.1007/s11010-011-0765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0765-x

Keywords

Navigation