Skip to main content
Log in

The mechanisms underlying ICa heterogeneity across murine left ventricle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

L-type calcium current (ICa) plays a critical role in excitation–contraction coupling (ECC). Unlike transient outward K+ current (Ito), it is controversial whether ICa transmural gradient exists in left ventricle. Although previous studies have shown some evidences for ICa heterogeneity, the mechanism is still unknown. In this study, the authors recorded ICa from epicardial (EPI) and endocardial (ENDO) myocytes isolated from murine left ventricle using patch-clamp technique. It was found that ICa density was obviously larger in EPI than in ENDO (7.3 ± 0.3 pA/pF vs. 6.2 ± 0.2 pA/pF, at test potential of +10 mV, P < 0.05). The characteristics of ICa showed no difference between these two regions except for the fast inactivation time constants (9.9 ± 0.9 ms in EPI vs. 13.5 ± 0.9 ms in ENDO, at test potential of +10 mV, P < 0.05). In addition, it was explored the molecular mechanism underlying ICa transmural gradient by Western blot. The authors demonstrated that a higher activity of CaMKII in ENDO cells induced more nuclear translocation of p65, a component of nuclear factor-kappa B (NF-kB). Consequently, p65 in ENDO inhibited more transcription of Cav1.2, the main encoding gene for L-type calcium channels (LTCCs). These results reveal a difference in CaMKII/p65 signal pathway between EPI and ENDO that underlies this mechanism of ICa heterogeneity in murine left ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sims C, Reisenweber S, Viswanathan PC et al (2008) Sex, age, and regional differences in L-type calcium current are important determinants of arrhythmia phenotype in rabbit hearts with drug-induced long QT type 2. Circ Res 102(9):e86–e100

    Article  PubMed  CAS  Google Scholar 

  2. Patel SP, Campbell DL (2005) Transient outward potassium current’, Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569:7–39

    Article  PubMed  CAS  Google Scholar 

  3. Demolombe S, Marionneau C, Le Bouter S et al (2005) Functional genomics of cardiac ion channel genes. Cardiovasc Res 67:438–447

    Article  PubMed  CAS  Google Scholar 

  4. Xiong W, Tian Y, DiSilvestre D et al (2005) Transmural heterogeneity of Na+–Ca2+exchange: evidence for differential expression in normal and failing hearts. Circ Res 97:207–209

    Article  PubMed  CAS  Google Scholar 

  5. Gao J, Wang W, Cohen IS et al (2005) Transmural gradients in Na/K pump activity and [Na+]i in canine ventricle. Biophys J 89:1700–1709

    Article  PubMed  CAS  Google Scholar 

  6. Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351–365

    PubMed  CAS  Google Scholar 

  7. Zygmunt AC, Eddlestone GT, Thomas GP et al (2001) Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol 281:H689–H697

    CAS  Google Scholar 

  8. Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385

    PubMed  CAS  Google Scholar 

  9. Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100:315–322

    Article  PubMed  CAS  Google Scholar 

  10. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14

    PubMed  CAS  Google Scholar 

  11. Jurkat-Rott K, Lehmann-Horn F (2004) The impact of splice isoforms on voltage-gated calcium channel alpha1 subunits. J Physiol 554:609–619

    Article  PubMed  CAS  Google Scholar 

  12. Fuller-Bicer GA, Varadi G, Koch SE et al (2009) Targeted disruption of the voltage-dependent calcium channel alpha2/delta-1-subunit. Am J Physiol Heart Circ Physiol 297:H117–H124

    Article  PubMed  CAS  Google Scholar 

  13. Hullin R, Singer-Lahat D, Freichel M et al (1992) Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. EMBO 11:885–890

    CAS  Google Scholar 

  14. Wang HS, Cohen IS (2003) Calcium channel heterogeneity in canine left ventricular myocytes. J Physiol 547:825–833

    Article  PubMed  CAS  Google Scholar 

  15. Pham TV, Robinson RB, Danilo P Jr et al (2002) Effects of gonadal steroids on gender-related differences in transmural dispersion of L-type calcium current. Cardiovasc Res 53:752–762

    Article  PubMed  CAS  Google Scholar 

  16. Bryant SM, Shipsey SJ, Hart G (1997) Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy. Cardiovasc Res 35:315–323

    Article  PubMed  CAS  Google Scholar 

  17. Kimura S, Bassett AL, Furukawa T et al (1991) Differences in the effect of metabolic inhibition on action potentials and calcium currents in endocardial and epicardial cells. Circulation 84:768–777

    PubMed  CAS  Google Scholar 

  18. Bryant SM, Shipsey SJ, Hart G (1999) Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy. Cardiovasc Res 42:391–401

    Article  PubMed  CAS  Google Scholar 

  19. Kim N, Cannell MB, Hunter PJ (2010) Changes in the calcium current among different transmural regions contributes to action potential heterogeneity in rat heart. Prog Biophys Mol Biol 103:28–34

    Article  PubMed  CAS  Google Scholar 

  20. Dilly KW, Rossow CF, Votaw VS et al (2006) Mechanisms underlying variations in excitation–contraction coupling across the mouse left ventricular free wall. J Physiol 572:227–241

    PubMed  CAS  Google Scholar 

  21. Wang Y, Tandan S, Cheng J (2008) CaMKII-dependent remodeling of Ca2+ current in pressure-overload heart failure. J Biol Chem 283:25524–25532

    Article  PubMed  CAS  Google Scholar 

  22. Xu L, Lai D, Cheng J et al (2010) Alterations of L-type calcium current and cardiac function in CaMKII delta knockout mice. Circ Res 107:398–407

    Article  PubMed  CAS  Google Scholar 

  23. Ishiguro K, Green T, Rapley J et al (2006) Ca2+/calmodulin dependent protein kinase II is a modulator of CARMA1-mediated NF-kappaB activation. Mol Cell Biol 26:5497–5508

    Article  PubMed  CAS  Google Scholar 

  24. Shi XZ, Pazdrak K, Saada N et al (2005) Negative transcriptional regulation of human colonic smooth muscle Cav1.2 channels by p50 and p65 subunits of nuclear factor-kappaB. Gastroenterology 129:1518–1532

    Article  PubMed  CAS  Google Scholar 

  25. Rossow CF, Minami E, Chase EG et al (2004) NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. Circ Res 94:1340–1350

    Article  PubMed  CAS  Google Scholar 

  26. Findlay I, Suzuki S, Murakami S (2008) Physiological modulation of voltage-dependent inactivation in the cardiac muscle L-type calcium channel: a modelling study. Prog Biophys Mol Biol 96:482–498

    Article  PubMed  CAS  Google Scholar 

  27. Yuan W, Bers DM (1994) Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am J Physiol 267:H982–H993

    PubMed  CAS  Google Scholar 

  28. Findlay I (2002) Voltage- and cation-dependent inactivation of L-type Ca2+ channel currents in guinea-pig ventricular myocytes. J Physiol 541:731–740

    Article  PubMed  CAS  Google Scholar 

  29. Huke S, Bers DM (2007) Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII. J Mol Cell Cardiol 42:590–599

    Article  PubMed  CAS  Google Scholar 

  30. Akar FG (2010) Left ventricular repolarization heterogeneity as an arrhythmic substrate in heart failure. Minerva Cardioangiol 58:205–212

    PubMed  CAS  Google Scholar 

  31. Yue L, Feng J, Gaspo R (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525

    PubMed  CAS  Google Scholar 

  32. Rossow CF, Dilly KW, Santana LF (2006) Differential calcineurin/NFATc3 activity contributes to the Ito transmural gradient in the mouse heart. Circ Res 98:1306–1313

    Article  PubMed  CAS  Google Scholar 

  33. Maier LS, Bers DM (2002) Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol 34:919–939

    Article  PubMed  CAS  Google Scholar 

  34. Santana LF, Chase EG, Votaw VS et al (2002) Functional coupling of calcineurin and protein kinase A in mouse ventricular myocytes. J Physiol 544:57–69

    Article  PubMed  CAS  Google Scholar 

  35. Benitah JP, Alvarez JL, Gómez AM (2010) L-type Ca (2+) current in ventricular cardiomyocytes. J Mol Cell Cardiol 48:26–36

    Article  PubMed  CAS  Google Scholar 

  36. Bányász T, Fülöp L, Magyar J (2003) Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovasc Res 58:66–75

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Eleventh Five-year Priority Projects of Hubei Science and Technology Department, China (no. 2006A301A04) and the National 211 Priority Projects of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Xin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Li, XY., Liu, Y. et al. The mechanisms underlying ICa heterogeneity across murine left ventricle. Mol Cell Biochem 352, 239–246 (2011). https://doi.org/10.1007/s11010-011-0759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0759-8

Keywords

Navigation