Skip to main content
Log in

MDA-9/syntenin interacts with ubiquitin via a novel ubiquitin-binding motif

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ubiquitination appears to be involved in proteasome-dependent proteolysis and in the membrane trafficking system including endocytosis and exocytosis. In this study, we identified MDA-9/syntenin as a novel ubiquitin-binding protein by a yeast two-hybrid system using modified ubiquitin in which lysine 48 is substituted by arginine. It has been reported that MDA-9/syntenin is a membrane-associated protein and regulates a cellular process involving endocytosis and intracellular transport. We found that MDA-9/syntenin binds to ubiquitin by a non-covalent bond and is ubiquitinated covalently. MDA-9/syntenin has no ubiquitin-binding motifs that have so far been reported, suggesting that MDA-9/syntenin physically interacts with ubiquitin via a novel binding motif. MDA-9/syntenin is stable in the cell, suggesting that ubiquitin binding of MDA-9/syntenin or ubiquitination of MDA-9/syntenin is not related to proteolysis. Furthermore, we showed that overexpression of wild-type MDA-9/syntenin enhances formation of filopodia, whereas MDA-9/syntenin lacking the PDZ domain inhibits the formation of filopodia, suggesting that MDA-9/syntenin plays an important role via interaction with ubiquitin in the regulation of cancer metastasis and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1–E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83

    Article  PubMed  CAS  Google Scholar 

  2. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  3. Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28:598–603

    Article  PubMed  CAS  Google Scholar 

  4. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  5. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  PubMed  CAS  Google Scholar 

  6. Okumura F, Hatakeyama S, Matsumoto M, Kamura T, Nakayama KI (2004) Functional regulation of FEZ1 by the U-box-type ubiquitin ligase E4B contributes to neuritogenesis. J Biol Chem 279:53533–53543

    Article  PubMed  CAS  Google Scholar 

  7. Chastagner P, Israel A, Brou C (2006) Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep 7:1147–1153

    Article  PubMed  CAS  Google Scholar 

  8. Meinnel T, Serero A, Giglione C (2006) Impact of the N-terminal amino acid on targeted protein degradation. Biol Chem 387:839–851

    Article  PubMed  CAS  Google Scholar 

  9. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132

    Article  PubMed  CAS  Google Scholar 

  10. Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765

    Article  PubMed  CAS  Google Scholar 

  11. Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1:193–202

    Article  PubMed  CAS  Google Scholar 

  12. Lin JJ, Jiang H, Fisher PB (1996) Characterization of a novel melanoma differentiation associated gene, mda-9, that is down-regulated during terminal cell differentiation. Mol Cell Differ 4:317–333

    Google Scholar 

  13. Zimmermann P (2006) PDZ domain-phosphoinositide interactions in cell-signaling. Verh K Acad Geneeskd Belg 68:271–286

    PubMed  CAS  Google Scholar 

  14. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120

    Article  PubMed  CAS  Google Scholar 

  15. Hatakeyama S, Matsumoto M, Yada M, Nakayama KI (2004) Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells 9:533–548

    Article  PubMed  CAS  Google Scholar 

  16. Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Durr J, David G (1997) Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci USA 94:13683–13688

    Article  PubMed  CAS  Google Scholar 

  17. Boukerche H, Su ZZ, Prevot C, Sarkar D, Fisher PB (2008) mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci USA 105:15914–15919

    Article  PubMed  CAS  Google Scholar 

  18. Fernandez-Larrea J, Merlos-Suarez A, Urena JM, Baselga J, Arribas J (1999) A role for a PDZ protein in the early secretory pathway for the targeting of proTGF-alpha to the cell surface. Mol Cell 3:423–433

    Article  PubMed  CAS  Google Scholar 

  19. Fialka I, Steinlein P, Ahorn H, Bock G, Burbelo PD, Haberfellner M, Lottspeich F, Paiha K, Pasquali C, Huber LA (1999) Identification of syntenin as a protein of the apical early endocytic compartment in Madin-Darby canine kidney cells. J Biol Chem 274:26233–26239

    Article  PubMed  CAS  Google Scholar 

  20. Zimmermann P, Zhang Z, Degeest G, Mortier E, Leenaerts I, Coomans C, Schulz J, N’Kuli F, Courtoy PJ, David G (2005) Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev Cell 9:377–388

    Article  PubMed  CAS  Google Scholar 

  21. Grootjans JJ, Reekmans G, Ceulemans H, David G (2000) Syntenin-syndecan binding requires syndecan-synteny and the co-operation of both PDZ domains of syntenin. J Biol Chem 275:19933–19941

    Article  PubMed  CAS  Google Scholar 

  22. Mortier E, Wuytens G, Leenaerts I, Hannes F, Heung MY, Degeest G, David G, Zimmermann P (2005) Nuclear speckles and nucleoli targeting by PIP2-PDZ domain interactions. EMBO J 24:2556–2565

    Article  PubMed  CAS  Google Scholar 

  23. Sarkar D, Boukerche H, Su ZZ, Fisher PB (2004) mda-9/syntenin: recent insights into a novel cell signaling and metastasis-associated gene. Pharmacol Ther 104:101–115

    Article  PubMed  CAS  Google Scholar 

  24. Sarkar D, Boukerche H, Su ZZ, Fisher PB (2008) mda-9/Syntenin: more than just a simple adapter protein when it comes to cancer metastasis. Cancer Res 68:3087–3093

    Article  PubMed  CAS  Google Scholar 

  25. Boukerche H, Aissaoui H, Prevost C, Hirbec H, Das SK, Su ZZ, Sarkar D, Fisher PB (2010) Src kinase activation is mandatory for MDA-9/syntenin-mediated activation of nuclear factor-kappaB. Oncogene 29:3054–3066

    Article  PubMed  CAS  Google Scholar 

  26. Boukerche H, Su ZZ, Emdad L, Baril P, Balme B, Thomas L, Randolph A, Valerie K, Sarkar D, Fisher PB (2005) mda-9/Syntenin: a positive regulator of melanoma metastasis. Cancer Res 65:10901–10911

    Article  PubMed  CAS  Google Scholar 

  27. Boukerche H, Su ZZ, Emdad L, Sarkar D, Fisher PB (2007) mda-9/Syntenin regulates the metastatic phenotype in human melanoma cells by activating nuclear factor-kappaB. Cancer Res 67:1812–1822

    Article  PubMed  CAS  Google Scholar 

  28. Meerschaert K, Bruyneel E, De Wever O, Vanloo B, Boucherie C, Bracke M, Vandekerckhove J, Gettemans J (2007) The tandem PDZ domains of syntenin promote cell invasion. Exp Cell Res 313:1790–1804

    Article  PubMed  CAS  Google Scholar 

  29. Ohno K, Koroll M, El Far O, Scholze P, Gomeza J, Betz H (2004) The neuronal glycine transporter 2 interacts with the PDZ domain protein syntenin-1. Mol Cell Neurosci 26:518–529

    Article  PubMed  CAS  Google Scholar 

  30. Tomoda T, Kim JH, Zhan C, Hatten ME (2004) Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 18:541–558

    Article  PubMed  CAS  Google Scholar 

  31. Hicke L, Schubert HL, Hill CP (2005) Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6:610–621

    Article  PubMed  CAS  Google Scholar 

  32. Hurley JH, Lee S, Prag G (2006) Ubiquitin-binding domains. Biochem J 399:361–372

    Article  PubMed  CAS  Google Scholar 

  33. Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24:3353–3359

    Article  PubMed  CAS  Google Scholar 

  34. Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, Wagner S, Kowanetz K, Breitling R, Mann M, Stenmark H, Dikic I (2006) Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8:163–169

    Article  PubMed  CAS  Google Scholar 

  35. Lin JJ, Jiang H, Fisher PB (1998) Melanoma differentiation associated gene-9, mda-9, is a human gamma interferon responsive gene. Gene 207:105–110

    Article  PubMed  CAS  Google Scholar 

  36. Machesky LM (2008) Lamellipodia and filopodia in metastasis and invasion. FEBS Lett 582:2102–2111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by a research grant from Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology, Ono Cancer Research Fund, Nakatomi Foundation and Japan Brain Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigetsugu Hatakeyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okumura, F., Yoshida, K., Liang, F. et al. MDA-9/syntenin interacts with ubiquitin via a novel ubiquitin-binding motif. Mol Cell Biochem 352, 163–172 (2011). https://doi.org/10.1007/s11010-011-0750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0750-4

Keywords

Navigation