Skip to main content
Log in

A Drosophila model for the screening of bioavailable NADPH oxidase inhibitors and antioxidants

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

NADPH oxidase is the major source of non-mitochondrial cellular reactive oxygen species (ROS), and also is reported to be a major cause of various diseases including atherosclerosis and hypertension. In order to screen a new curative reagent that can suppress NADPH oxidase activity, we developed a Drosophila melanogaster fly that would overexpress human Dual oxidase 2 (hDuox2), a member of the NADPH oxidase family, as a screening model. These flies (GMR-GAL4/UAS-hDuox2) had a high generation of ROS in the posterior region of the eye discs along with an easily recognizable rough-eye phenotype, which is an ideal and convenient marker for further screening steps. Moreover, the hDuox2-induced rough-eye phenotype can be rescued by feeding with a culture medium containing mulberry leaves (MLs), which reportedly have an antimetabolic effect. Some commercially available antioxidants such as quercetin-3-O-d-glucoside or quercetin-3-O-glucose-6′′-acetate, or the naringin contained in MLs and other herbs, also have shown a similar suppressing effect on the rough-eye phenotype. Our results suggest that flavonoid glycoside is absorbed from the intestine and functions in the body of D. melanogaster as it does in mammalian models such as rats. Thus, the GMR-GAL4/UAS-hDuox2 fly line is a promising model for the screening of novel drugs such as NADPH oxidase inhibitors and/or antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761

    PubMed  CAS  Google Scholar 

  2. Ando K, Fujita T (2009) Metabolic syndrome and oxidative stress. Free Radic Biol Med 47(3):213–218

    Article  PubMed  CAS  Google Scholar 

  3. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  PubMed  CAS  Google Scholar 

  4. Quinn MT, Gauss KA (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76(4):760–781

    Article  PubMed  CAS  Google Scholar 

  5. Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109

    Article  PubMed  Google Scholar 

  6. Guichard C, Moreau R, Pessayre D, Epperson TK, Krause KH (2008) NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem Soc Trans 36(Pt 5):920–929

    Article  PubMed  CAS  Google Scholar 

  7. Sugimoto M, Arai H, Tamura Y, Murayama T, Khaengkhan P, Nishio T, Ono K, Ariyasu H, Akamizu T, Ueda Y, Kita T, Harada S, Kamei K, Yokode M (2009) Mulberry leaf ameliorates the expression profile of adipocytokines by inhibiting oxidative stress in white adipose tissue in db/db mice. Atherosclerosis 204(2):388–394

    Article  PubMed  CAS  Google Scholar 

  8. Enkhmaa B, Shiwaku K, Katsube T, Kitajima K, Anuurad E, Yamasaki M, Yamane Y (2005) Mulberry (Morus alba L.) leaves and their major flavonol quercetin 3–(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J Nutr 135(4):729–734

    PubMed  CAS  Google Scholar 

  9. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6(4):257–266

    Article  PubMed  CAS  Google Scholar 

  10. Pachucki J, Wang D, Christophe D, Miot F (2004) Structural and functional characterization of the two human ThOX/Duox genes and their 5′-flanking regions. Mol Cell Endocrinol 214(1–2):53–62

    Article  PubMed  CAS  Google Scholar 

  11. Pfarr N, Korsch E, Kaspers S, Herbst A, Stach A, Zimmer C, Pohlenz J (2006) Congenital hypothyroidism caused by new mutations in the thyroid oxidase 2 (THOX2) gene. Clin Endocrinol (Oxf) 65(6):810–815

    Article  CAS  Google Scholar 

  12. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17(11):1502–1504

    PubMed  CAS  Google Scholar 

  13. Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310(5749):847–850

    Article  PubMed  CAS  Google Scholar 

  14. Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X, Sullards C, Flaherty DB, Benian GM, Lambeth JD (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154(4):879–891

    Article  PubMed  CAS  Google Scholar 

  15. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  16. Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14(4):367–379

    Article  PubMed  CAS  Google Scholar 

  17. Hirose F, Ohshima N, Shiraki M, Inoue YH, Taguchi O, Nishi Y, Matsukage A, Yamaguchi M (2001) Ectopic expression of DREF induces DNA synthesis, apoptosis, and unusual morphogenesis in the Drosophila eye imaginal disc: possible interaction with Polycomb and trithorax group proteins. Mol Cell Biol 21(21):7231–7242

    Article  PubMed  CAS  Google Scholar 

  18. Harauma A, Murayama T, Ikeyama K, Sano H, Arai H, Takano R, Kita T, Hara S, Kamei K, Yokode M (2007) Mulberry leaf powder prevents atherosclerosis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 358(3):751–756

    Article  PubMed  CAS  Google Scholar 

  19. Makino T, Shimizu R, Kanemaru M, Suzuki Y, Moriwaki M, Mizukami H (2009) Enzymatically modified isoquercitrin, alpha-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol Pharm Bull 32(12):2034–2040

    Article  PubMed  CAS  Google Scholar 

  20. Murota K, Terao J (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 417(1):12–17

    Article  PubMed  CAS  Google Scholar 

  21. Hollman PC, Bijsman MN, van Gameren Y, Cnossen EP, de Vries JH, Katan MB (1999) The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 31(6):569–573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Won-Jae Lee, Ewha Woman’s University, South Korea for the UAS-hDuox2 stock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaeko Kamei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anh, N.T.T., Nishitani, M., Harada, S. et al. A Drosophila model for the screening of bioavailable NADPH oxidase inhibitors and antioxidants. Mol Cell Biochem 352, 91–98 (2011). https://doi.org/10.1007/s11010-011-0743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0743-3

Keywords

Navigation