Skip to main content
Log in

Sex steroids influence glucose oxidation through modulation of insulin receptor expression and IRS-1 serine phosphorylation in target tissues of adult male rat

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Skeletal muscle, liver, and adipose tissue are major insulin responsive target organs that also express androgen receptor. Testosterone (T) plays a role in maintaining normal insulin sensitivity in men but its effects on insulin target tissues are not fully understood. Our previous study showed that orchidectomy impairs glucose oxidation through decreased insulin receptor (IR) mRNA expression in skeletal muscles, liver, and adipose tissue of male rat. Furthermore, T replacement restored IR mRNA expression in skeletal muscles and liver, but did not have any effect in adipose tissue. In the present study, orchidectomy decreased IR mRNA and protein levels in muscle, liver, and adipose tissue. Treatment with a combination of T plus estradiol (E) was necessary to restore the IR mRNA and protein to control levels in adipose tissue. T or E treatment alone had no effect on IR mRNA levels in adipose tissue. T alone also had no effect on the IR protein, whereas E alone had a stimulatory effect. In comparison, in muscle and liver, T or T plus E restored the IR mRNA and protein to control levels. In muscle and liver, E alone had no effect on IR mRNA expression but restored the IR protein. In addition, orchidectomy was seen to have a stimulatory effect on IRS-1 Serine636/639 phosphorylation in the three tissues studied. Following T, E or combined supplementation to castrated rats, the pattern of IRS-1 serine phosphorylation was restored to normal control levels. Furthermore, orchidectomy decreased serum insulin and glucose oxidation in all three tissues, and this was restored by T and its combination with E replacement, whereas E alone had no effect. It is concluded from the present study that sex steroid deficiency induces impaired glucose oxidation in insulin responsive tissues, which is mediated through reduced IR expression, and increased IRS-1 serine phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saad F, Gooren L (2009) The role of testosterone in the metabolic syndrome: a review. J Steroid Biochem Mol Biol 114:40–43

    Article  PubMed  CAS  Google Scholar 

  2. Grossmann M, Gianatti EJ, Zajac JD (2010) Testosterone and type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 17:247–256

    Article  PubMed  CAS  Google Scholar 

  3. Kapoor D, Goodwin E, Channer KS, Jones TH (2006) Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 154:899–906

    Article  PubMed  CAS  Google Scholar 

  4. Yialamas MA, Dwyer AA, Hanley E, Lee H, Pitteloud N, Hayes FJ (2007) Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 92:4254–4259

    Article  PubMed  CAS  Google Scholar 

  5. Jones TH (2010) Testosterone deficiency: a risk factor for cardiovascular disease? Trends Endocrinol Metab 21:496–503

    Article  PubMed  CAS  Google Scholar 

  6. Holmang A, Bjorntorp P (1992) The effects of testosterone on insulin sensitivity in male rats. Acta Physiol Scand 146:505–510

    Article  PubMed  CAS  Google Scholar 

  7. Morimoto S, Fernandez-Mejia C, Romero-Navarro G, Morales-Peza N, Diaz-Sanchez V (2001) Testosterone effect on insulin content, messenger ribonucleic acid levels, promoter activity, and secretion in the rat. Endocrinology 142:1442–1447

    Article  PubMed  CAS  Google Scholar 

  8. Grillo ML, Jacobus AP, Scalco R, Amaral F, Rodrigues DO, Loss ES, Wassermann GF (2005) Testosterone rapidly stimulates insulin release from isolated pancreatic islets through a non-genomic dependent mechanism. Horm Metab Res 37:662–665

    Article  PubMed  CAS  Google Scholar 

  9. Rizza RA (2000) Androgen effect on insulin action and glucose metabolism. Mayo Clin Proc 75:S61–S64

    PubMed  CAS  Google Scholar 

  10. Livingstone C, Collison M (2002) Sex steroids and insulin resistance. Clin Sci 102:151–166

    Article  PubMed  CAS  Google Scholar 

  11. Rochira V, Madeo B, Zirilli L, Caffagni G, Maffei L, Carani C (2007) Oestradiol replacement treatment and glucose homeostasis in two men with congenital aromatase deficiency: evidence for a role of oestradiol and sex steroids imbalance on insulin sensitivity in men. Diabet Med 24:1491–1495

    Article  PubMed  CAS  Google Scholar 

  12. Barros RP, Gabbi C, Morani A, Warner M, Gustafsson JA (2009) Participation of ERalpha and ERbeta in glucose homeostasis in skeletal muscle and white adipose tissue. Am J Physiol Endocrinol Metab 297:E124–E133

    Article  PubMed  CAS  Google Scholar 

  13. Cohen JC, Hickman R (1987) Insulin resistance and diminished glucose tolerance in powerlifters ingesting anabolic steroids. J Clin Endocrinol Metab 64:960–963

    Article  PubMed  CAS  Google Scholar 

  14. Marin P, Holmang S, Gustafsson C, Jonsson L, Kvist H, Elander A, Eldh J, Sjostrom L, Holm G, Bjorntorp P (1993) Androgen treatment of abdominally obese men. Obes Res 1:245–251

    PubMed  CAS  Google Scholar 

  15. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 97:12729–12734

    Article  PubMed  CAS  Google Scholar 

  16. Takeda K, Toda K, Saibara T, Nakagawa M, Saika K, Onishi T, Sugiura T, Shizuta Y (2003) Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. J Endocrinol 176:237–246

    Article  PubMed  CAS  Google Scholar 

  17. Muthusamy T, Dhevika S, Murugesan P, Balasubramanian K (2007) Testosterone deficiency impairs glucose oxidation through defective insulin and its receptor gene expression in target tissues of adult male rats. Life Sci 81:534–542

    Article  PubMed  CAS  Google Scholar 

  18. Schinner S, Scherbaum WA, Bornstein SR, Barthel A (2005) Molecular mechanisms of insulin resistance. Diabet Med 22:674–682

    Article  PubMed  CAS  Google Scholar 

  19. Sykiotis GP, Papavassiliou AG (2001) Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Mol Endocrinol 15:1864–1869

    Article  PubMed  CAS  Google Scholar 

  20. Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP, Laville M, Le Marchand-Brustel Y, Tanti JF, Vidal H (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325

    Article  PubMed  CAS  Google Scholar 

  21. Liu J, Tsang S, Wong TM (2006) Testosterone is required for delayed cardioprotection and enhanced heat shock protein 70 expression induced by preconditioning. Endocrinology 147:4569–4577

    Article  PubMed  CAS  Google Scholar 

  22. Oparil S, Levine RL, Chen SJ, Durand J, Chen YF (1997) Sexually dimorphic response of the balloon-injured rat carotid artery to hormone treatment. Circulation 95:1301–1307

    PubMed  CAS  Google Scholar 

  23. Dickson RB, Aten RF, Eisenfeld AJ (1978) An unusual sex steroid-binding protein in mature male rat liver cytosol. Endocrinology 103:1636–1646

    Article  PubMed  CAS  Google Scholar 

  24. Ariano MA, Armstrong RB, Edgerton VR (1973) Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21:51–55

    Article  PubMed  CAS  Google Scholar 

  25. Collins S, Ahima RS, Kahn BB (2005) Biology of adipose tissue. In: Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RJ (eds) Joslin’s diabetes mellitus. A Wolters Klunwer Company, Indian edition by BI publication, pp 207–226

  26. Riley V (1960) Adaptation of orbital bleeding technic to rapid serial blood studies. Proc Soc Exp Biol Med 104:751–754

    PubMed  CAS  Google Scholar 

  27. Johnson AD, Turner PC (1971) Epidydimal carbohydrate metabolism-I. Glucose-1-14C and Glucose-6-14C metabolism by mouse, rat and rabbit tissues. Comp Biochem Physiol 39:599–604

    Article  CAS  Google Scholar 

  28. Kraft LA, Johnson AD (1972) Epididymal carbohydrate metabolism II. Substrates and pathway utilization of caput and cauda epididymal tissue from the rabbit, rat and mouse. Comp Biochem Physiol B 42:451–461

    Article  PubMed  CAS  Google Scholar 

  29. Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS (2003) Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci USA 100:3155–3160

    Article  PubMed  CAS  Google Scholar 

  30. Peinnequin A, Mouret C, Birot O, Alonso A, Mathieu J, Clarencon D, Agay D, Chancerelle Y, Multon E (2004) Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunol 5:3

    Article  PubMed  Google Scholar 

  31. Dombrowski L, Roy D, Marcotte B, Marette A (1996) A new procedure for the isolation of plasma membranes, T tubules, and internal membranes from skeletal muscle. Am J Physiol 270:E667–E676

    PubMed  CAS  Google Scholar 

  32. Nevado C, Valverde AM, Benito M (2006) Role of insulin receptor in the regulation of glucose uptake in neonatal hepatocytes. Endocrinology 147:3709–3718

    Article  PubMed  CAS  Google Scholar 

  33. Lowry OH, Rosenberg NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  34. White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40:S2–S17

    Article  PubMed  CAS  Google Scholar 

  35. Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D (2002) Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J Endocrinol 173:81–94

    Article  PubMed  CAS  Google Scholar 

  36. Shinozaki S, Chiba T, Kokame K, Miyata T, Ai M, Kawakami A, Kaneko E, Yoshida M, Shimokado K (2007) Site-specific effect of estradiol on gene expression in the adipose tissue of ob/ob mice. Horm Metab Res 39:192–196

    Article  PubMed  CAS  Google Scholar 

  37. Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M, Clyne CD, Davis S, Simpson ER, Carani C (2004) Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 89:61–70

    Article  PubMed  CAS  Google Scholar 

  38. Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108:439–451

    Article  PubMed  CAS  Google Scholar 

  39. Cato AC, Peterziel H (1998) The androgen receptor as mediator of gene expression and signal transduction pathways. Trends Endocrinol Metab 9:150–154

    Article  PubMed  CAS  Google Scholar 

  40. Lemoine S, Granier P, Tiffoche C, Berthon PM, Thieulant ML, Carre F, Delamarche P (2002) Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type. Acta Physiol Scand 175:117–211

    Article  Google Scholar 

  41. Mayes JS, Watson GH (2004) Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 5:197–216

    Article  PubMed  CAS  Google Scholar 

  42. McEwan IJ, Gustafsson J (1997) Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc Natl Acad Sci USA 94:8485–8490

    Article  PubMed  CAS  Google Scholar 

  43. Yeh S, Chang C (1996) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 93:5517–5521

    Article  PubMed  CAS  Google Scholar 

  44. Aarnisalo P, Palvimo JJ, Janne OA (1998) CREB-binding protein in androgen receptor mediated signaling. Proc Natl Acad Sci USA 95:2122–2127

    Article  PubMed  CAS  Google Scholar 

  45. Fukuda H, Noguchi T, Iritani N (2001) Transcriptional regulation of insulin receptor gene promoter in rat hepatocytes. Biochem Biophys Res Commun 280:1274–1278

    Article  PubMed  CAS  Google Scholar 

  46. Scheen AJ, Lefebvre PJ (1996) Insulin action in man. Diabetes Metab 22:105–110

    PubMed  CAS  Google Scholar 

  47. Kahn CR, Saltiel AR (2005) The molecular mechanism of insulin action and regulation of glucose and lipid metabolism. In: Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RJ (eds) Joslin’s diabetes mellitus. A Wolters Klunwer Company, Indian edition by BI publication, pp 145–169

  48. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537

    Article  PubMed  CAS  Google Scholar 

  49. Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF (2001) Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189

    Article  PubMed  CAS  Google Scholar 

  50. Gual P, Gremeaux T, Gonzalez T, Le Marchand-Brustel Y, Tanti JF (2003) MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612, and 632. Diabetologia 46:1532–1542

    Article  PubMed  CAS  Google Scholar 

  51. Ohlson N, Bergh A, Persson ML, Wikström P (2006) Castration rapidly decreases local insulin-like growth factor-1 levels and inhibits its effects in the ventral prostate in mice. Prostate 66:1687–1697

    Article  PubMed  CAS  Google Scholar 

  52. Allemand MC, Asmann Y, Klaus K, Tatpati L, Coddington CC, Nair KS (2006) O-202: An in vitro model for PCOS related insulin resistance: The effects of testosterone on phosphorylation of intracellular insulin signaling proteins in rat skeletal muscle primary culture. Fertil Steril (Suppl 1):S86–S87

  53. Muthusamy T, Murugesan P, Balasubramanian K (2009) Sex steroids deficiency impairs glucose transporter 4 expression and its translocation through defective Akt phosphorylation in target tissues of adult male rat. Metabolism 58:1581–1592

    Article  PubMed  CAS  Google Scholar 

  54. Nagira K, Sasaoka T, Wada T, Fukui K, Ikubo M, Hori S, Tsuneki H, Saito S, Kobayashi M (2006) Altered subcellular distribution of estrogen receptor alpha is implicated in estradiol-induced dual regulation of insulin signaling in 3T3-L1 adipocytes. Endocrinology 147:1020–1028

    Article  PubMed  CAS  Google Scholar 

  55. Hommelberg PP, Langen RC, Schols AM, Mensink RP, Plat J (2010) Inflammatory signaling in skeletal muscle insulin resistance: green signal for nutritional intervention? Curr Opin Clin Nutr Metab Care 13:647–655

    Article  PubMed  CAS  Google Scholar 

  56. Staab CA, Maser E (2010) 11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. J Steroid Biochem Mol Biol 119:56–72

    Article  PubMed  CAS  Google Scholar 

  57. Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci USA 98:4640–4645

    Article  PubMed  CAS  Google Scholar 

  58. Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109

    Article  PubMed  CAS  Google Scholar 

  59. Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481

    Article  PubMed  CAS  Google Scholar 

  60. Moretti C, Frajese GV, Guccione L, Wannenes F, De Martino MU, Fabbri A, Frajese G (2005) Androgens and body composition in the aging male. J Endocrinol Invest 28(3 Suppl):56–64

    PubMed  CAS  Google Scholar 

  61. Jiao Q, Pruznak AM, Huber D, Vary TC, Lang CH (2009) Castration differentially alters basal and leucine-stimulated tissue protein synthesis in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 297:E1222–E1232

    Article  CAS  Google Scholar 

  62. Yanase T, Fan W, Kyoya K, Min L, Takayanagi R, Kato S, Nawata H (2008) Androgens and metabolic syndrome: lessons from androgen receptor knock out (ARKO) mice. J Steroid Biochem Mol Biol 109:254–257

    Article  PubMed  CAS  Google Scholar 

  63. Lin HY, Yu IC, Wang RS, Chen YT, Liu NC, Altuwaijri S, Hsu CL, Ma WL, Jokinen J, Sparks JD, Yeh S, Chang C (2008) Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology 47:1924–1935

    Article  PubMed  CAS  Google Scholar 

  64. Traish AM, Saad F, Guay A (2009) The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J Androl 30:23–32

    Article  PubMed  CAS  Google Scholar 

  65. Ramamani A, Aruldhas MM, Govindarajulu P (1999) Differential response of rat skeletal muscle glycogen metabolism to testosterone and estradiol. Can J Physiol Pharmacol 77:300–304

    Article  PubMed  CAS  Google Scholar 

  66. Kahn CR, Goldfine ID, Neville DM Jr, De Meyts P (1978) Alterations in insulin binding induced by changes in vivo in the levels of glucocorticoids and growth hormone. Endocrinology 103:1054–1466

    Article  PubMed  CAS  Google Scholar 

  67. Buren J, Liu HX, Jensen J, Eriksson JW (2002) Dexamethasone impairs insulin signalling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. Eur J Endocrinol 146:419–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from the Indian Council of Medical Research (ICMR), New Delhi in the form of Senior Research Fellowship (SRF) to T. Muthusamy (Award No. 3/1/2/15/05-RHN dated 9-8-2005), DST-FIST, UGC-SAP-DRS-II and UGC-ASIST programmes are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karundevi Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthusamy, T., Murugesan, P., Srinivasan, C. et al. Sex steroids influence glucose oxidation through modulation of insulin receptor expression and IRS-1 serine phosphorylation in target tissues of adult male rat. Mol Cell Biochem 352, 35–45 (2011). https://doi.org/10.1007/s11010-011-0737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0737-1

Keywords

Navigation