Skip to main content

Advertisement

Log in

Mammalian cell entry gene family of Mycobacterium tuberculosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Knowledge of virulence factors is important to understand the microbial pathogenesis and find better antibiotics. Mammalian cell entry (mce) is a crucial protein family for the virulence of Mycobacterium tuberculosis (M. tuberculosis). This review summarized the advances on mce genes. The genomic organization, characteristics of mce genes, phylogeny of this family, and their roles in M. tuberculosis virulence are emphasized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HIV:

Human immunodeficiency virus

SBP:

Substrate-binding proteins

ABC:

ATP-binding cassette

CHP:

Conserved hypothetical protein

References

  1. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129. doi:10.1146/annurev.immunol.19.1.93

    Article  PubMed  CAS  Google Scholar 

  2. Shepard CC (1957) Use of HeLa cells infected with tubercle bacilli for the study of antituberculous drugs. J Bacteriol 73:494–498

    PubMed  CAS  Google Scholar 

  3. Kress G (1995) Combining dental training with medical training. J Dent Educ 59:1061

    PubMed  CAS  Google Scholar 

  4. Shepard WP (1957) Industrial medicine, a new specialty. Can Med Assoc J 77:206–211

    PubMed  CAS  Google Scholar 

  5. Rosqvist R, Magnusson KE, Wolf-Watz H (1994) Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13:964–972

    PubMed  CAS  Google Scholar 

  6. Bliska JB, Galan JE, Falkow S (1993) Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73:903–920. doi:0092-8674(93)90270-Z[pii]

    Article  PubMed  CAS  Google Scholar 

  7. Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457

    Article  PubMed  CAS  Google Scholar 

  8. Casali N, Riley LW (2007) A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 8:60. doi:10.1186/1471-2164-8-60

    Article  PubMed  Google Scholar 

  9. Kumar A, Bose M, Brahmachari V (2003) Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect Immun 71:6083–6087. doi:10.1128/IAI.71.10.6083-6087.2003

    Article  PubMed  CAS  Google Scholar 

  10. Santangelo MD, Klepp L, Nunez-Garcia J et al (2009) Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in Mycobacterium tuberculosis. Microbiol-Sgm 155:2245–2255. doi:10.1099/Mic.0.027086-0

    Article  CAS  Google Scholar 

  11. Dunphy KY, Senaratne RH, Masuzawa M, Kendall LV, Riley LW (2010) Attenuation of Mycobacterium tuberculosis functionally disrupted in a fatty acyl-coenzyme A synthetase gene fadD5. J Infect Dis 201:1232–1239. doi:10.1086/651452

    Article  PubMed  CAS  Google Scholar 

  12. Casali N, White AM, Riley LW (2006) Regulation of the Mycobacterium tuberculosis mce1 operon. J Bacteriol 188:441–449. doi:10.1128/JB.188.2.441-449.2006

    Article  PubMed  CAS  Google Scholar 

  13. Joon M, Bhatia S, Pasricha R, Bose M, Brahmachari V (2010) Functional analysis of an intergenic non-coding sequence within mce1 operon of M. tuberculosis. BMC Microbiol 10:128. doi:10.1186/1471-2180-10-128

    Article  PubMed  Google Scholar 

  14. Dassa E, Bouige P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152(3–4):211–229

    Article  PubMed  CAS  Google Scholar 

  15. Mourez M, Hofnung M, Dassa E (1997) Subunit interactions in ABC transporters: a conservedsequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 16(11):3066–3077

    Article  PubMed  CAS  Google Scholar 

  16. Joshi SM, Pandey AK, Capite N, Fortune SM, Rubin EJ, Sassetti CM (2006) Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci USA 103:11760–11765. doi:10.1073/pnas.0603179103

    Article  PubMed  CAS  Google Scholar 

  17. Liu PQ, Liu CE, Ames GF (1999) Modulation of ATPase activity by physical disengagement of the ATP-binding domains of an ABC transporter, the histidine permease. J Biol Chem 274:18310–18318

    Article  PubMed  CAS  Google Scholar 

  18. Chitale S, Ehrt S, Kawamura I et al (2001) Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol 3:247–254. doi:cmi110[pii]

    Article  PubMed  CAS  Google Scholar 

  19. El-Shazly S, Ahmad S, Mustafa AS, Al-Attiyah R, Krajci D (2007) Internalization by HeLa cells of latex beads coated with mammalian cell entry (Mce) proteins encoded by the mce3 operon of Mycobacterium tuberculosis. J Med Microbiol 56:1145–1151. doi:10.1099/jmm.0.47095-0

    Article  PubMed  CAS  Google Scholar 

  20. Harboe M, Christensen A, Ahmad S et al (2002) Cross-reaction between mammalian cell entry (Mce) proteins of mycobacterium tuberculosis. Scand J Immunol 56:580–587

    Article  PubMed  CAS  Google Scholar 

  21. Casali N, Konieczny M, Schmidt MA, Riley LW (2002) Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 70:6846–6852. doi:10.1128/IAI.70.12.6846-6852.2002

    Article  PubMed  CAS  Google Scholar 

  22. Haile Y, Caugant DA, Bjune G, Wiker HG (2002) Mycobacterium tuberculosis mammalian cell entry operon (mce) homologs in Mycobacterium other than tuberculosis (MOTT). FEMS Immunol Med Microbiol 33:125–132. doi:PiiS0928-8244(02)00302-4

    Article  PubMed  CAS  Google Scholar 

  23. Cole ST, Eiglmeier K, Parkhill J et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011. doi:10.1038/35059006

    Article  PubMed  CAS  Google Scholar 

  24. Zumarraga M, Bigi F, Alito A, Romano MI, Cataldi A (1999) A 12.7 kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. Microbiology 145:893–897

    Article  PubMed  CAS  Google Scholar 

  25. Kumar A, Chandolia A, Chaudhry U, Brahmachari V, Bose M (2005) Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol 43:185–195. doi:10.1016/j.femsim.2004.08.013

    Article  PubMed  CAS  Google Scholar 

  26. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. doi:10.1038/31159

    Article  PubMed  CAS  Google Scholar 

  27. Dirusso CC, Black PN (2004) Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. J Biol Chem 279:49563–49566. doi:10.1074/jbc.R400026200

    Article  PubMed  CAS  Google Scholar 

  28. Cheigh CI, Senaratne R, Uchida Y, Casali N, Kendall LV, Riley LW (2010) Posttreatment reactivation of tuberculosis in mice caused by Mycobacterium tuberculosis disrupted in mce1R. J Infect Dis 202:752–759. doi:10.1086/655224

    Article  PubMed  Google Scholar 

  29. Ahmad S, Akbar PK, Wiker HG, Harboe M, Mustafa AS (1999) Cloning, expression and immunological reactivity of two mammalian cell entry proteins encoded by the mce1 operon of Mycobacterium tuberculosis. Scand J Immunol 50(5):510–518. doi:sji631[pii]

    Article  PubMed  CAS  Google Scholar 

  30. Tekaia F, Gordon SV, Garnier T, Brosch R, Barrell BG, Cole ST (1999) Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 79:329–342. doi:S0962847999902204[pii]

    Article  PubMed  CAS  Google Scholar 

  31. Santangelo Mde L, Blanco F, Campos E et al (2009) Mce2R from Mycobacterium tuberculosis represses the expression of the mce2 operon. Tuberculosis 89:22–28. doi:10.1016/j.tube.2008.09.002

    Article  PubMed  Google Scholar 

  32. Marjanovic O, Miyata T, Goodridge A, Kendall LV, Riley LW (2010) Mce2 operon mutant strain of Mycobacterium tuberculosis is attenuated in C57BL/6 mice. Tuberculosis 90:50–56. doi:10.1016/j.tube.2009.10.004

    Article  PubMed  CAS  Google Scholar 

  33. Gioffre A, Infante E, Aguilar D et al (2005) Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect 7:325–334. doi:10.1016/j.micinf.2004.11.007

    Article  PubMed  CAS  Google Scholar 

  34. Ahmad S, El-Shazly S, Mustafa AS, Al-Attiyah R (2005) The six mammalian cell entry proteins (Mce3A-F) encoded by the mce3 operon are expressed during in vitro growth of Mycobacterium tuberculosis. Scand J Immunol 62:16–24. doi:10.1111/j.1365-3083.2005.01639.x

    Article  PubMed  CAS  Google Scholar 

  35. Ahmad S, El-Shazly S, Mustafa AS, Al-Attiyah R (2004) Mammalian cell-entry proteins encoded by the mce3 operon of Mycobacterium tuberculosis are expressed during natural infection in humans. Scand J Immunol 60:382–391. doi:10.1111/j.0300-9475.2004.01490.x

    Article  PubMed  CAS  Google Scholar 

  36. Santangelo MP, Goldstein J, Alito A et al (2002) Negative transcriptional regulation of the mce3 operon in Mycobacterium tuberculosis. Microbiology 148:2997–3006

    PubMed  CAS  Google Scholar 

  37. Rkenes TP, Lamark T, Strom AR (1996) DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation. J Bacteriol 178:1663–1670

    PubMed  CAS  Google Scholar 

  38. Saini N, Sharma M, Chandolia A, Pasricha R, Brahmachari V, Bose M (2008) Characterization of Mce 4 A protein of Mycobacterium tuberculosis: role in invasion and survival. BMC Microbiol 8:200. doi:10.1186/1471-2180-8-200

    Article  PubMed  Google Scholar 

  39. Senaratne RH, Sidders B, Sequeira P et al (2008) Mycobacterium tuberculosis strains disrupted in mce3 and mce4 operons are attenuated in mice. J Med Microbiol 57:164–170. doi:10.1099/jmm.0.47454-0

    Article  PubMed  CAS  Google Scholar 

  40. Kendall SL, Withers M, Soffair CN et al (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65:684–699. doi:10.1111/j.1365-2958.2007.05827.x

    Article  PubMed  CAS  Google Scholar 

  41. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380. doi:10.1073/pnas.0711159105

    Article  PubMed  CAS  Google Scholar 

  42. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659. doi:10.1126/science.1088063

    Article  PubMed  CAS  Google Scholar 

  43. Kendall SL, Burgess P, Balhana R et al (2010) Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156:1362–1371. doi:10.1099/mic.0.034538-0

    Article  PubMed  CAS  Google Scholar 

  44. Xu G, Li Y, Yang J et al (2008) Mycobacterium bovis Mce4E protein may play a role in modulating cytokine expression profile in alveolar macrophage. Int J Tuberc Lung D 12:664–669

    CAS  Google Scholar 

  45. McDermott MF (2001) TNF and TNFR biology in health and disease. Cell Mol Biol (Noisy-le-grand) 47:619–635

    CAS  Google Scholar 

  46. Nathan CF, Hibbs JB Jr (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3(1):65–70

    Article  PubMed  CAS  Google Scholar 

  47. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  48. Corbel C, Melchers F (1984) The synergism of accessory cells and of soluble alpha-factors derived from them in the activation of B cells to proliferation. Immunol Rev 78:51–74

    Article  PubMed  CAS  Google Scholar 

  49. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25 + T cell-mediated suppression by dendritic cells. Science 299:1033–1036. doi:10.1126/science.10782311078231[pii]

    Article  PubMed  CAS  Google Scholar 

  50. Pajon R, Yero D, Lage A, Llanes A, Borroto CJ (2006) Computational identification of beta-barrel outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine candidates. Tuberculosis (Edinb) 86:290–302. doi:10.1016/j.tube.2006.01.005

    Article  CAS  Google Scholar 

  51. Fu LM, Shinnick TM (2007) Genome-wide exploration of the drug action of capreomycin on Mycobacterium tuberculosis using Affymetrix oligonucleotide GeneChips. J Infection 54:277–284. doi:10.1016/j.jinf.2006.05.012

    Article  Google Scholar 

Download references

Acknowledgments

The work is Supported by the National key infectious disease project (No. 2008ZX10003-006, No. 2008ZX10003-001), national natural science foundation (No. 81071316), Excellent PhD thesis fellowship of southwest university (No. kb2009010, No. ky2009009), The Fundamental Research Funds for the Central Universities (XDJK2009A003) and Natural Science Foundation Project of CQ CSTC (CSTC, 2010BB5002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Xie, JP. Mammalian cell entry gene family of Mycobacterium tuberculosis . Mol Cell Biochem 352, 1–10 (2011). https://doi.org/10.1007/s11010-011-0733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0733-5

Keywords

Navigation