Skip to main content
Log in

Matrix metalloproteinases and membrane damage markers in sera of patients with acute myocardial infarction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Coronary artery disease is a multifunctional disease and represents one of the leading causes of death worldwide. Oxidative stress appears as an etiological factor for myocardial damage during acute myocardial infarction. Some data suggest that acute coronary syndromes may also be influenced by matrix metalloproteinases through degradation of the fibrous cap of vulnerable atherosclerotic lesions. It has been indicated that gelatinases A and B play a key role in acute myocardial infarction and deoxyribonuclease I has been postulated to be a novel early phase marker of disease. The aim was to study activity of gelatinases A and B in acute myocardial infarction and its association with some membrane damage markers. Seventy-five patients with disease and seventy-five healthy controls were enrolled. Activities of lactate dehydrogenase, malate dehydrogenase, and deoxyribonuclease I were estimated using standard spectrophotometric assay and isoforms of lactate and malate dehydrogenases were determined using direct zymography. Activity of dehydrogenases was significantly higher in patients, while deoxyribonuclease I was lower. Isoform 2 of lactate dehydrogenase was significantly higher in the patient group. Gelatinases A and B were detected only in patients group. The results suggest determination of serum malate dehydrogenase activity to be used as an additional parameter for acute myocardial infarction diagnosis. Those findings suggest important role of gelatinases A and B as biomarkers of early stage of acute myocardial infarction together with membrane damage parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar A, Sivakanesan R, Singh S (2008) Oxidative stress, endogenous antioxidant and ischemia-modified albumin in normolipidemic acute myocardial infarction patients. J Health Sci 54:482–487

    Article  CAS  Google Scholar 

  2. Tsujita K, Kaikita T et al (2010) Acute coronary syndrome: initiating factors. Nippon Rinsho 68:607–614

    PubMed  Google Scholar 

  3. Hannson GK (2005) Atherosclerosis and coronary arthery disease. N Eng J Med 352:1685–1695

    Article  Google Scholar 

  4. Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends in Biochem Sci 243:81–119

    Google Scholar 

  5. Caroll CE (1987) Oxygen free radicals and human disease. Ann Int Med 107:526–545

    Google Scholar 

  6. Thygesen K, Alpert JS et al (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  7. Lo AS, Liew CT et al (2005) Developmental regulation and cellular distribution of human cytosolic malate dehydrogenase. J Cell Biochem 94:763–773

    Article  PubMed  CAS  Google Scholar 

  8. Lewis DG, Wei R et al (2008) Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest 118:3503–3512

    Article  PubMed  CAS  Google Scholar 

  9. Kawai Y, Yoshida M et al (2004) Diagnostic use of serum deoxyribonuclease I activity as a novel early-phase marker in acute myocardial infarction. Circulation 109:2398–2400

    Article  PubMed  CAS  Google Scholar 

  10. Giannitsis E, Katus HA (2007) Ability of DNase I activity to detect myocardial ischemia in vasospastic angina—a view through a monocle? Eur Heart J 28:2955–2956

    Article  PubMed  Google Scholar 

  11. Morikawa N, Kawai Y et al (2007) Serum deoxyribonuclease I activity can be used as a novel marker of transient myocardial ischaemia: results in vasospastic angina pectoris induced by provocation test. Eur Heart J 28:2992–2997

    Article  PubMed  CAS  Google Scholar 

  12. Agewall S (2006) Matrix metalloproteinases and cardiovascular disease. Eur Heart J 27:121–122

    Article  PubMed  Google Scholar 

  13. Hayashidani S, Tsutsui H et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and left remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–H1235

    PubMed  CAS  Google Scholar 

  14. Matsumara S, Iwanaga S et al (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115:599–609

    Google Scholar 

  15. Heymans S, Luttun A et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  PubMed  CAS  Google Scholar 

  16. Romanic AM, Harrison SM et al (2002) Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovas Res 54:549–558

    Article  CAS  Google Scholar 

  17. Kai H, Ikeda H et al (1998) Peripheral blood levels of matrix metalloproteinases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32:368–372

    Article  PubMed  CAS  Google Scholar 

  18. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  PubMed  CAS  Google Scholar 

  19. Jones CB, Sane DC, Herrington DM (2003) Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res 59:812–823

    Article  PubMed  CAS  Google Scholar 

  20. Buhl SN, Jackson KY et al (1977) Optimal conditions for assaying human lactate dehydrogenase by the lactate-to-pyruvate reaction: Arrhenius relationships for lactate dehydrogenase isoenzymes 1 and 5. Gun Chem 23:1289

    CAS  Google Scholar 

  21. Frieden CJ, Fernandez S (1975) Kinetic studies on pig heart cytoplasmic malate dehydrogenase. J Biol Chem 250:2106–2113

    PubMed  CAS  Google Scholar 

  22. Kunitz M (1950) Isolation and general properties spectrophotometric method for the measurement of DNase activity. J Gen Phys 33:349–362

    Article  CAS  Google Scholar 

  23. Van der Helm HJ (1962) Interference of the measurement of lactate dehydrogenase (LDH) activity in human serum and plasma by LDH from blood cells. Clin Chem Acta 7:124–128

    Article  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Yoshimura Y, Kawano T et al (1970) Zymographic demonstration of lactate and malate dehydrogenases isoenzymes in the rodent salivary glands. Histochem Cell Biol 22:337–346

    CAS  Google Scholar 

  26. La Rocca G, Pucci MI et al (2004) Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera. Br J Cancer 90:1414–1421

    Article  PubMed  CAS  Google Scholar 

  27. Rotenberg Z, Weinberger I et al (1987) Lactate dehydrogenase isoenzymes in serum during recent acute myocardial infarction. Clin Chem 33:1419–1420

    PubMed  CAS  Google Scholar 

  28. Wagenknecht K, Barleben H et al (1988) Malate dehydrogenase isoenzymes in myocardial infarction. Kardiologiia 28:55–57

    PubMed  CAS  Google Scholar 

  29. Yao M, Koegh A et al (1996) Elevated DNase I levels in human idiopathic dilated cardiomyopathy: an indicator of apoptosis? J Mol Cell Cardiol 28:95–101

    Article  PubMed  CAS  Google Scholar 

  30. Massova I, Kotra LP et al (1998) Matrix metalloproteinases: structures, evolution and diversification. FASEB J 12:1075–1095

    PubMed  CAS  Google Scholar 

  31. Noji Y, Kajinami K et al (2001) Circulating matrix metalloproteinases and their inhibitors in premature coronary atherosclerosis. Clin Chem Lab Med 39:380–384

    Article  PubMed  CAS  Google Scholar 

  32. Zempo N, Kenargy RD et al (1994) Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg 20:209–217

    PubMed  CAS  Google Scholar 

  33. Celik T, Iyisoy A et al (2008) Matrix metalloproteinases in acute coronary syndromes: a new therapeutic target? Int J Cardiol 134:402–404

    Article  PubMed  Google Scholar 

  34. Armstrong EJ, Morrow DA et al (2006) Inflammatory biomarkers in acute coronary syndromes: part IV: matrix metalloproteinases and biomarkers of platelet activation. Circulation 113:382–385

    Article  Google Scholar 

  35. Fukuda D, Shimada K et al (2006) Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. Am J Cardiol 97:175–180

    Article  PubMed  CAS  Google Scholar 

  36. Konstantino Y, Nguyen TT et al (2009) Potential implications of matrix metalloproteinase-9 in assessment and treatment of coronary artery disease. Biomarkers 14:118–129

    Article  PubMed  CAS  Google Scholar 

  37. Moe KT, Wong P (2010) Current trends in diagnostic biomarkers of acute coronary syndrome. Ann Acad Med Singapore 39:210–215

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant of Ministry of Science and Technological Development of Serbia (No. 175063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Gopcevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopcevic, K., Rovcanin, B., Kekic, D. et al. Matrix metalloproteinases and membrane damage markers in sera of patients with acute myocardial infarction. Mol Cell Biochem 350, 163–168 (2011). https://doi.org/10.1007/s11010-010-0694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0694-0

Keywords

Navigation