Skip to main content
Log in

Identification and analysis of function of a novel splicing variant of mouse receptor activator of NF-κB

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Receptor activator of NF-κB (RANK) is a member of the tumor necrosis factor receptor (TNFR) family expressed in osteoclast precursors, and RANK–RANK ligand (RANKL) signaling is a key system for differentiation, activation and survival of osteoclasts. Here, we report the identification of a novel alternative splicing variant of mouse RANK gene (vRANK) that contains a new intervening exon between exon 1 and exon 2 of mouse full-length RANK (fRANK) mRNA. Since this novel exon contains the stop codon, vRANK encodes truncated amino acids that have a portion of the signal peptide of fRANK and an additional 19 amino acids that show no homology to previously reported domains. By transient transfection studies with vRANK–GFP and –Flag expressing constructs, vRANK was found localized mostly in the cytoplasm and partly in the cell membrane, but was not secreted into the culture supernatant. Under the stimulation of various factors, the expression of vRANK mRNA was almost parallel to that of fRANK in RAW264.7 cells not treated with M-CSF. Overexpression of vRANK, on the other hand, decreased TRACP (a marker of osteoclasts) mRNA expression as well as the number of TRACP-positive multinucleated giant cells. While the mRNA expression levels of NFATc1 (a master transcriptional factor of the osteoclast differentiation program) were not affected, apoptotic cells increased significantly in vRAN K-transfected cells treated with sRANKL. Taken together, these results suggest that vRANK is a novel osteoclast suppressor that reduces the number of RANKL-induced mature osteoclasts mainly by negating the anti-apoptotic effect of RANKL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RANK:

Receptor activator of NF-κB

RANKL:

Receptor activator of NF-κB (RANK) ligand

GFP:

Green fluorescent protein

M-CSF:

Macrophage colony-stimulating factor

TRACP:

Tartrate-resistant acid phosphatase

NFAT:

Nuclear factor of activated T cells

OPG:

Osteoprotegerin

TNF:

Tumor necrosis factor

TRAF:

Tumor necrosis factor receptor-associated factor

JNK:

c-Jun N-terminal kinase

ERK:

Extracellular signal-regulated kinase

Akt:

AKR mouse T-cell lymphoma

LPS:

Lipopolysaccharide

MITF:

Microphthalmia-associated transcription factor

References

  1. Ross FP, Teitelbaum SL (2005) Alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 208:88–105

    Article  PubMed  CAS  Google Scholar 

  2. Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER et al (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91:257–263

    Article  PubMed  CAS  Google Scholar 

  3. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  PubMed  CAS  Google Scholar 

  4. Kaji H, Sugimoto T, Kanatani M, Nishiyama K, Chihara K (1997) Dexamethasone stimulates osteoclast-like cell formation by directly acting on hemopoietic blast cells and enhances osteoclast-like cell formation stimulated by parathyroid hormone and prostaglandin E2. J Bone Miner Res 12:734–741

    Article  PubMed  CAS  Google Scholar 

  5. Mizuno A, Kanno T, Hoshi M, Shibata O, Yano K, Fujise N et al (2002) Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab 20:337–344

    Article  PubMed  CAS  Google Scholar 

  6. Tolar J, Teitelbaum SL, Orchard PJ (2004) Osteopetrosis. N Engl J Med 351:2839–2849

    Article  PubMed  Google Scholar 

  7. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S et al (1998) Osteolast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  8. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  9. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  PubMed  CAS  Google Scholar 

  10. Liu W, Xu D, Yang H, Xu H, Shi Z, Cao X et al (2004) Functional identification of three receptor Activator of NF-κB cytoplasmic motifs mediating osteoclast differentiation and function. J Biol Chem 279:54759–54769

    Article  PubMed  CAS  Google Scholar 

  11. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  12. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K et al (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749

    Article  PubMed  CAS  Google Scholar 

  13. Feng X (2005) Regulatory roles and molecular signaling of TNF fanily members in osteoclasts. Gene 350:1–13

    Article  PubMed  CAS  Google Scholar 

  14. Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J, Reddy SV et al (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Investig 114:475–484

    PubMed  CAS  Google Scholar 

  15. Day CJ, Kim MS, Stephens SR, Simcock WE, Aitken CJ, Nicholson GC et al (2004) Gene array identification of osteoclast genes: differential inhibition of osteoclastogenesis by cyclosporin A and granulocyte macrophage colony stimulating factor. J Cell Biochem 91:303–315

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S et al (2004) Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 279:45969–45979

    Article  PubMed  CAS  Google Scholar 

  17. Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H et al (2003) Transforming growth factor-β controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem 278:44975–44987

    Article  PubMed  CAS  Google Scholar 

  18. Ishii J, Kitazawa R, Mori K, McHugh KP, Morii E, Kondo T, Kitazawa S (2008) Lipopolysaccharide suppresses RANK gene expression in macrophages by down-regulating PU.1 and MITF. J Cell Biochem 105:896–904

    Article  PubMed  CAS  Google Scholar 

  19. Hakozaki A, Yoda M, Tohmonda T, Furukawa M, Hikata T, Uchikawa S, Takaishi H, Matsumoto M, Chiba K, Horiuchi K, Toyama Y (2010) RANKL induces ectodomain shedding of RANK in murine RAW264.7 macrophages. J Immunol 184:2442–2448

    Article  PubMed  CAS  Google Scholar 

  20. Mironov AA, Fickett JW, Gelafnd MS (1999) Frequent alternative splicing of human genes. Genome Res 9:1288–1293

    Article  PubMed  CAS  Google Scholar 

  21. Croft L, Schandroff S, Clark F, Burrage K, Arctander P, Mattick JS (2000) ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genom. Nat Genet 24:340–341

    Article  PubMed  CAS  Google Scholar 

  22. Brett D, Hanke J, Lehmann G, Haase S, Delbruck S, Krueger S et al (2000) EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett 474:83–86

    Article  PubMed  CAS  Google Scholar 

  23. Kan Z, Rouchka EC, Gish WR, States DJ (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 11:889–900

    Article  PubMed  CAS  Google Scholar 

  24. Modrek B, Resch A, Grasso C, Lee C (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucl Acid Res 29:2850–2859

    Article  CAS  Google Scholar 

  25. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD et al (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144

    Article  PubMed  CAS  Google Scholar 

  26. Kitazawa S, Ross FP, McHugh K, Teitelbaum SL (1995) Interleukin-4 induces expression of the integrin alphavbeta3 via transactivation of the beta3 gene. J Biol Chem 270:4115–4120

    Article  PubMed  CAS  Google Scholar 

  27. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A et al (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucl Acids Res 31:315–318

    Article  PubMed  CAS  Google Scholar 

  28. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  29. Wang C, Steer JH, Joyce DA, Yip KH, Zheng MH, Xu J (2003) 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits osteoclastogenesis by suppressing RANKL-induced NF-κB activation. J Bone Miner Res 18:2159–2168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Shuichi Matsuda and Ms. Noriko Sakamoto for excellent technical assistance. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (16590278, 19390100 and 19659086 to S.K., 20790283 to T.K., 18590372 and 21590419 to R.K., and 21790351 to K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohei Kitazawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukai, S., Kitazawa, R., Ishii, J. et al. Identification and analysis of function of a novel splicing variant of mouse receptor activator of NF-κB. Mol Cell Biochem 350, 29–38 (2011). https://doi.org/10.1007/s11010-010-0679-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0679-z

Keywords

Navigation