Skip to main content

Advertisement

Log in

Pre-aggregated Aβ1–42 peptide increases tau aggregation and hyperphosphorylation after short-term application

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neuritic amyloid plaques and neurofibrillary tangles, consisting of hyperphosphorylated tau protein, are the hallmarks of Alzheimer disease. It is not clear so far, how both structures are functionally and physiologically connected. We have investigated the role of Aβ1–42 on hyperphosphorylation and aggregation of tau in SY5Y cells by transfection and overexpression with two tau constructs, a shortened wildtype tau (2N4R) and a point mutation tau (P301L), found in fronto-temporal dementia. It was found that the tau protein becomes hyperphosphorylated and forms large aggregates inside cells, visualized by immunofluorescence, after short incubation of 90 min with preaggregated Aβ1–42. In Addition, Aβ1–42 caused a decrease of tau solubility in both tau constructs in this relatively short time period. Taken together, these experiments suggest that pathological preaggregated Aβ1–42 in physiological concentrations quickly induces hyperphosphorylation and pathological structural changes of tau protein and thereby directly linking the ‘amyloid hypothesis’ to tau pathology, observed in Alzheimer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498

    Article  CAS  PubMed  Google Scholar 

  2. Tolnay M, Probst A (1999) Review: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25(3):171–187

    Article  CAS  PubMed  Google Scholar 

  3. Clark CM, Karlawish JH (2003) Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med 138(5):400–410

    PubMed  Google Scholar 

  4. Sandbrink R, Monning U, Masters CL, Beyreuther K (1997) Expression of the app gene family in brain cells, brain development and aging. Gerontology 43(1–2):119–131

    Article  CAS  PubMed  Google Scholar 

  5. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388

    Article  CAS  PubMed  Google Scholar 

  6. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  7. Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197:192–193

    Article  CAS  PubMed  Google Scholar 

  8. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33(1):95–130

    Article  CAS  PubMed  Google Scholar 

  9. Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11(1):153–163

    Article  CAS  PubMed  Google Scholar 

  10. Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. J Biol Chem 267(24):17047–17054

    CAS  PubMed  Google Scholar 

  11. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639

    CAS  PubMed  Google Scholar 

  12. Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88

    CAS  PubMed  Google Scholar 

  13. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87(6):554–567

    Article  CAS  PubMed  Google Scholar 

  14. Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L (1988) Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38(11):1682–1687

    CAS  PubMed  Google Scholar 

  15. Nagy Z, Jobst KA, Esiri MM, Morris JH, King EM, MacDonald B, Litchfield S, Barnetson L, Smith AD (1996) Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer’s disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia 7(2):76–81

    CAS  PubMed  Google Scholar 

  16. Gotz J, Chen F, Barmettler R, Nitsch RM (2001) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276(1):529–534

    Article  CAS  PubMed  Google Scholar 

  17. Ferrari A, Hoerndli F, Baechi T, Nitsch RM, Gotz J (2003) Beta-amyloid induces paired helical filament-like tau filaments in tissue culture. J Biol Chem 278(41):40162–40168

    Article  CAS  PubMed  Google Scholar 

  18. Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78(2):309–324

    Article  CAS  PubMed  Google Scholar 

  19. Delacourte A (1999) Biochemical and molecular characterization of neurofibrillary degeneration in frontotemporal dementias. Dement Geriatr Cogn Disord 10(Suppl 1):75–79

    Google Scholar 

  20. Tanaka T, Iqbal K, Trenkner E, Liu DJ, Grundke-Iqbal I (1995) Abnormally phosphorylated tau in SY5Y human neuroblastoma cells. FEBS Lett 360(1):5–9

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Johnson GV (2000) Tau protein is hyperphosphorylated in a site-specific manner in apoptotic neuronal PC12 cells. J Neurochem 75(6):2346–2357

    Article  CAS  PubMed  Google Scholar 

  22. Datki Z, Papp R, Zadori D, Soos K, Fulop L, Juhasz A, Laskay G, Hetenyi C, Mihalik E, Zarandi M, Penke B (2004) In vitro model of neurotoxicity of abeta 1–42 and neuroprotection by a pentapeptide: irreversible events during the first hour. Neurobiol Dis 17(3):507–515

    Article  CAS  PubMed  Google Scholar 

  23. Betz WJ, Henkel AW (1994) Okadaic acid disrupts clusters of synaptic vesicles in frog motor nerve terminals. J Cell Biol 124(5):843–854

    Article  CAS  PubMed  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  25. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354

    Article  CAS  PubMed  Google Scholar 

  26. Liu ML, Hong ST (2005) Early phase of amyloid beta42-induced cytotoxicity in neuronal cells is associated with vacuole formation and enhancement of exocytosis. Exp Mol Med 37(6):559–566

    CAS  PubMed  Google Scholar 

  27. Dupont-Wallois L, Sautiere PE, Cocquerelle C, Bailleul B, Delacourte A, Caillet-Boudin ML (1995) Shift from fetal-type to Alzheimer-type phosphorylated tau proteins in SKNSH-SY 5Y Cells treated with okadaic acid. FEBS Lett 357(2):197–201

    Article  CAS  PubMed  Google Scholar 

  28. Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, Scott CW, Caputo C, Frappier T, Smith MA et al (1994) Glycated tau protein in alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 91(16):7787–7791

    Article  CAS  PubMed  Google Scholar 

  29. Mercken M, Vandermeeren M, Lubke U, Six J, Boons J, Van de Voorde A, Martin JJ, Gheuens J (1992) Monoclonal antibodies with selective specificity for Alzheimer tau are directed against phosphatase-sensitive epitopes. Acta Neuropathol 84(3):265–272

    Article  CAS  PubMed  Google Scholar 

  30. Goedert M, Spillantini MG, Davies SW (1998) Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol 8(5):619–632

    Article  CAS  PubMed  Google Scholar 

  31. Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gylys KH (2008) Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 172(6):1683–1692

    Article  CAS  PubMed  Google Scholar 

  32. Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E, Vandermeeren M, Cras P (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J 301(Pt 3):871–877

    CAS  PubMed  Google Scholar 

  33. Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S (2002) Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115(1):201–211

    Article  CAS  PubMed  Google Scholar 

  34. Mawal-Dewan M, Henley J, Van de Voorde A, Trojanowski JQ, Lee VM (1994) The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J Biol Chem 269(49):30981–30987

    CAS  PubMed  Google Scholar 

  35. Vintem AP, Henriques AG, da Cruz ESOA, da Cruz ESEF (2009) PP1 inhibition by abeta peptide as a potential pathological mechanism in Alzheimer’s disease. Neurotoxicol Teratol 31(2):85–88

    Article  CAS  PubMed  Google Scholar 

  36. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, Ishiguro K, Yamaguchi H (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 31(4):317–323

    Article  CAS  PubMed  Google Scholar 

  37. Tsuboi T, Zhao C, Terakawa S, Rutter GA (2000) Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event [in process citation]. Curr Biol 10(20):1307–1310

    Article  CAS  PubMed  Google Scholar 

  38. Guillozet-Bongaarts AL, Cahill ME, Cryns VL, Reynolds MR, Berry RW, Binder LI (2006) Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. J Neurochem 97(4):1005–1014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Department of Psychiatry from the University Hospital Erlangen. We thank Dr. G. Hübinger, Sirenade, for providing the P301L and 2N4R tau constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wolfram Henkel.

Additional information

S. Ott and A. W. Henkel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, S., Henkel, A.W., Henkel, M.K. et al. Pre-aggregated Aβ1–42 peptide increases tau aggregation and hyperphosphorylation after short-term application. Mol Cell Biochem 349, 169–177 (2011). https://doi.org/10.1007/s11010-010-0671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0671-7

Keywords

Navigation