Skip to main content

Advertisement

Log in

Embryonic stem cell-derived cardiomyocytes harbor a subpopulation of niche-forming Sca-1+ progenitor cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The adult mammalian heart is known to contain a population of cardiac progenitor cells. It has not been unambiguously determined, however, whether these cells form as part of the developmental program of the heart or migrate there by way of the circulatory system. This study was done in order to determine the origin of this population of cells. A population of cardiomyocytes was established from mouse embryonic stem (ES) cells using a genetic selection technique. In order to determine whether cardiac progenitor cells exist within this ES cell-derived cardiomyocyte population, the cells were analyzed by fluorescence activated cell sorting (FACS) using an antibody directed against stem cell antigen-1 (Sca-1). We observed that approximately 4% of the cardiomyocyte population was composed of Sca-1+ cells. When the Sca-1+ cells were isolated by magnetic cell sorting and differentiated as cellular aggregates, contractions were observed in 100% of the aggregates. Gene expression studies using quantitative RT-PCR showed that these cells expressed terminally differentiated cardiac-specific genes. When three-dimensional cellular aggregates were formed from ES cell-derived cardiomyocytes co-cultured with adult HL-1 cardiomyocytes, the Sca-1+ cells were found to “sort out” and form niches within the cell aggregates. Our data demonstrate that cardiac progenitor cells in the adult heart originate as part of the developmental program of the heart and that Sca-1+ progenitor cells can provide an important in vitro model system to study the formation of cellular niches in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Claycomb WC (1991) Proliferative potential of the mammalian ventricular cardiac muscle cell. In: Oberpriller JO, Mauro A, Oberpriller JC (eds) The development and regenerative potential of cardiac muscle. Harwood Academic Publishers, New York, pp 351–364

    Google Scholar 

  2. Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 119:187–263

    Article  Google Scholar 

  3. Claycomb WC (1992) Control of cardiac muscle cell division. Trends Cardiovasc Med 2:231–236

    Article  CAS  PubMed  Google Scholar 

  4. Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    CAS  PubMed  Google Scholar 

  5. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:948–954

    Article  PubMed  Google Scholar 

  6. Docherty K (2009) Pancreatic stellate cells can form new beta-like cells. Biochem J 421:e1–e4

    Article  CAS  PubMed  Google Scholar 

  7. Fellous TG, Islam S, Tadrous PJ, Elia G, Kocher HM, Bhattacharya S, Mears L, Turnbull DM, Taylor RW, Greaves LC, Chinnery PF, Taylor G, McDonald SA, Wright NA, Alison MR (2009) Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 49:1655–1663

    Article  CAS  PubMed  Google Scholar 

  8. Goel RK, Suri V, Suri A, Sarkar C, Mohanty S, Sharma MC, Yadav PK, Srivastava A (2009) Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. J Clin Neurosci 16:1211–1217

    Article  PubMed  Google Scholar 

  9. Mantesso A, Sharpe P (2009) Dental stem cells for tooth regeneration and repair. Expert Opin Biol Ther 9:1143–1154

    Article  CAS  PubMed  Google Scholar 

  10. Miller FD, Gauthier-Fisher A (2009) Home at last: neural stem cell niches defined. Cell Stem Cell 4:507–510

    Article  CAS  PubMed  Google Scholar 

  11. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  12. Hosoda T, D’Amario D, Cabral-Da-Silva MC, Zheng H, Padin-Iruegas ME, Ogorek B, Ferreira-Martins J, Yasuzawa-Amano S, Amano K, Ide-Iwata N, Cheng W, Rota M, Urbanek K, Kajstura J, Anversa P, Leri A (2009) Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci USA 106:17169–17174

    Article  CAS  PubMed  Google Scholar 

  13. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  CAS  PubMed  Google Scholar 

  14. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    Article  CAS  PubMed  Google Scholar 

  15. Kajstura J, Urbanek K, Rota M, Bearzi C, Hosoda T, Bolli R, Anversa P, Leri A (2008) Cardiac stem cells and myocardial disease. J Mol Cell Cardiol 45:505–513

    Article  CAS  PubMed  Google Scholar 

  16. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98:216–224

    Article  CAS  PubMed  Google Scholar 

  17. Gulick J, Subramaniam A, Neumann J, Robbins J (1991) Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem 266:9180–9185

    CAS  PubMed  Google Scholar 

  18. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  19. Jackson M, Taylor AH, Jones EA, Forrester LM (2010) The culture of mouse embryonic stem cells and formation of embryoid bodies. Methods Mol Biol 633:1–18

    Article  CAS  PubMed  Google Scholar 

  20. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  CAS  PubMed  Google Scholar 

  21. White SM, Constantin PE, Claycomb WC (2004) Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol 286:H823–H829

    Article  CAS  PubMed  Google Scholar 

  22. Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM, Addicks K (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36:149–162

    Article  CAS  PubMed  Google Scholar 

  23. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  PubMed  Google Scholar 

  25. Johansson PA, Cappello S, Götz M (2010) Stem cells niches during development-lessons from the cerebral cortex. Curr Opin Neurobiol 20(4):400–407

    Article  CAS  PubMed  Google Scholar 

  26. Taupin P (2006) Adult neural stem cells, neurogenic niches, and cellular therapy. Stem Cell Rev 2:213–219

    Article  PubMed  Google Scholar 

  27. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs E (2009) Finding one’s niche in the skin. Cell Stem Cell 4:499–502

    Article  CAS  PubMed  Google Scholar 

  29. Williams ED, Lowes AP, Williams D, Williams GT (1992) A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am J Pathol 141:773–776

    CAS  PubMed  Google Scholar 

  30. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  CAS  PubMed  Google Scholar 

  31. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  CAS  PubMed  Google Scholar 

  32. Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103:9226–9231

    Article  CAS  PubMed  Google Scholar 

  33. Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, Behringer RR, Schwartz RJ, Entman ML, Schneider MD (2004) Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann N Y Acad Sci 1015:182–189

    Article  PubMed  Google Scholar 

  34. Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, Takahashi T, Goto M, Mikami Y, Yasuda N, Akazawa H, Uezumi A, Takeda A, Komuro I (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176:329–341

    Article  CAS  PubMed  Google Scholar 

  35. Martin-Puig S, Wang Z, Chien KR (2008) Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2:320–331

    Article  CAS  PubMed  Google Scholar 

  36. Yang CF, Chou KY, Weng ZC, Hung SC, Lai ST, Hsu CP, Wang JS (2008) Cardiac myocyte progenitors from adult hearts for myocardial regenerative therapy. J Chin Med Assoc 71:79–85

    Article  CAS  PubMed  Google Scholar 

  37. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275

    Article  CAS  PubMed  Google Scholar 

  38. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Li L (2008) Stem cell niche: microenvironment and beyond. J Biol Chem 283:9499–9503

    Article  CAS  PubMed  Google Scholar 

  40. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  41. Xie T, Li L (2007) Stem cells and their niche: an inseparable relationship. Development 134:2001–2006

    Article  CAS  PubMed  Google Scholar 

  42. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  CAS  PubMed  Google Scholar 

  43. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH Grant HL-076498, and a Research Enhancement Fund award from Louisiana State University Health Sciences Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Claycomb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, M.L., Hashem, S.I. & Claycomb, W.C. Embryonic stem cell-derived cardiomyocytes harbor a subpopulation of niche-forming Sca-1+ progenitor cells. Mol Cell Biochem 349, 69–76 (2011). https://doi.org/10.1007/s11010-010-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0661-9

Keywords

Navigation