Skip to main content
Log in

The precursor to the germ cell-specific PCSK4 proteinase is inefficiently activated in transfected somatic cells: evidence of interaction with the BiP chaperone

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Proprotein convertase subtilisin/kexin type 4 (PCSK4), also known as proprotein convertase 4 (PC4), is a serine endoproteinase primarily expressed in testicular germ cells and in sperm. Inactivation of its gene in mouse causes male infertility. From studies of the biosynthesis of PCSK3/furin, its closest relative, it has been inferred that PCSK4 is synthesised in the endoplasmic reticulum as a zymogen; that it is rapidly matured by autocatalytic cleavage between the prodomain and the catalytic domain; that the cleaved prodomain remains attached to the mature enzyme; and that the enzyme is finally activated by the removal of the prodomain peptides following a secondary cleavage within the prodomain. In this study, we used human embryonic kidney 293 (HEK293) cells to study the biosynthesis of rat or human PCSK4. Our results show that the bulk of PCSK4 remains as an intracellular zymogen, presumably trapped in the endoplasmic reticulum, where it interacts with the general molecular chaperone glucose-regulated protein 78/Immunoglobulin heavy-chain binding protein (GRP78/BiP). These data suggest that, unlike other members of the convertase family, proPCSK4 cannot efficiently self-activate in somatic cells. These cells may lack the intracellular environment and the interacting molecules specific to testicular germ cells where this enzyme is normally expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Aa:

Amino acid

BiP:

Immunoglobulin heavy-chain binding protein

CT:

Carboxyl-terminal

DMEM:

Dulbecco’s Modified Eagle’s Medium

ER:

Endoplasmic reticulum

FA:

Formic acid

FBS:

Foetal bovine serum

GlcNAc:

N-acetyl glucosamine

GRP:

Glucose-regulated protein

h-, m-, r-PCSK4:

Human, mouse, rat PCSK4

HEK:

Human embryonic kidney

HPLC:

High-performance liquid chromatography

IB:

Immunoblotting

IP:

Immunoprecipitation

IP/IB:

IP followed by IB

LC–MS/MS:

Liquid chromatograph tandem mass spectrometry

MCS:

Multiple cloning site

NARC-1:

Neural apoptosis regulated convertase-1

ORF:

Open reading frame

PBS:

Phosphate buffered saline

PC:

Proprotein convertase

PCSK:

Proprotein convertase subtilisin/kexin type

PNGase F:

Peptide-N4-(acetyl-β-glucosaminyl) aspargine amidase

PVDF:

Polyvinylidene fluoride

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SKI-1/S1P:

Subtilisin-kexin isozyme-1/site 1 protease

TBS:

Tris-buffered saline

TM:

Transmembrane

References

  1. Seidah NG, Chretien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848:45–62

    Article  CAS  PubMed  Google Scholar 

  2. Seidah NG, Prat A (2002) Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem 38:79–94

    CAS  PubMed  Google Scholar 

  3. Seidah NG, Khatib AM, Prat A (2006) The proprotein convertases and their implication in sterol and/or lipid metabolism. Biol Chem 387:871–877

    Article  CAS  PubMed  Google Scholar 

  4. Zhou A, Webb G, Zhu X, Steiner DF (1999) Proteolytic processing in the secretory pathway. J Biol Chem 274:20745–20748

    Article  CAS  PubMed  Google Scholar 

  5. Mbikay M, Seidah NG, Chretien M (2001) Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem J 357:329–342

    Article  CAS  PubMed  Google Scholar 

  6. Mbikay M, Raffin-Sanson ML, Tadros H, Sirois F, Seidah NG, Chretien M (1994) Structure of the gene for the testis-specific proprotein convertase 4 and of its alternate messenger RNA isoforms. Genomics 20:231–237

    Article  CAS  PubMed  Google Scholar 

  7. Mbikay M, Seidah NG, Chrétien M, Simpson EM (1995) Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human. Genomics 26:123–129

    Article  CAS  PubMed  Google Scholar 

  8. Nakayama K, Kim WS, Torii S, Hosaka M, Nakagawa T, Ikemizu J, Baba T, Murakami K (1992) Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. Its testis-specific expression. J Biol Chem 267:5897–5900

    CAS  PubMed  Google Scholar 

  9. Seidah NG, Day R, Hamelin J, Gaspar A, Collard MW, Chrétien M (1992) Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol Endocrinol 6:1559–1570

    Article  CAS  PubMed  Google Scholar 

  10. Torii S, Yamagishi T, Murakami K, Nakayama K (1993) Localization of Kex2-like processing endoproteases, furin and PC4, within mouse testis by in situ hybridization. FEBS Lett 316:12–16

    Article  CAS  PubMed  Google Scholar 

  11. Gyamera-Acheampong C, Tantibhedhyangkul J, Weerachatyanukul W, Tadros H, Xu H, van de Loo JW, Pelletier RM, Tanphaichitr N, Mbikay M (2006) Sperm from mice genetically deficient for the PCSK4 proteinase exhibit accelerated capacitation, precocious acrosome reaction, reduced binding to egg zona pellucida, and impaired fertilizing ability. Biol Reprod 74:666–673

    Article  CAS  PubMed  Google Scholar 

  12. Tadros H, Chretien M, Mbikay M (2001) The testicular germ-cell protease PC4 is also expressed in macrophage-like cells of the ovary. J Reprod Immunol 49:133–152

    Article  CAS  PubMed  Google Scholar 

  13. Nelsen S, Berg L, Wong C, Christian JL (2005) Proprotein convertase genes in Xenopus development. Dev Dyn 233:1038–1044

    Article  CAS  PubMed  Google Scholar 

  14. Qiu Q, Basak A, Mbikay M, Tsang BK, Gruslin A (2005) Role of pro-IGF-II processing by proprotein convertase 4 in human placental development. Proc Natl Acad Sci USA 102:1104–11052

    Article  Google Scholar 

  15. Mbikay M, Tadros H, Ishida N, Lerner CP, De Lamirande E, Chen A, El-Alfy M, Clermont Y, Seidah NG, Chretien M, Gagnon C, Simpson EM (1997) Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci USA 94:6842–6846

    Article  CAS  PubMed  Google Scholar 

  16. Li M, Mbikay M, Arimura A (2000) Pituitary adenylate cyclase-activating polypeptide precursor is processed solely by prohormone convertase 4 in the gonads. Endocrinology 141:3723–3730

    Article  CAS  PubMed  Google Scholar 

  17. Shetty J, Diekman AB, Jayes FC, Sherman NE, Naaby_Hansen S, Flickinger CJ, Herr JC (2001) Differential extraction and enrichment of human sperm surface proteins in a proteome: identification of immunocontraceptive candidates. Electrophoresis 22:3053–3066

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt G, Sirois F, Anini Y, Kauri LM, Gyamera-Acheampong C, Fleck E, Scott FW, Chretien M, Mbikay M (2006) Differences of pancreatic expression of 7B2 between C57BL/6 J and C3H/HeJ mice and genetic polymorphisms at its locus (Sgne1). Diabetes 55:452–459

    Article  CAS  PubMed  Google Scholar 

  20. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  CAS  PubMed  Google Scholar 

  21. Gyamera-Acheampong C, Mbikay M (2009) Proprotein convertase subtilisin/kexin type 4 in mammalian fertility: a review. Hum Reprod Updat 15:237–247

    Article  CAS  Google Scholar 

  22. Maley F, Trimble RB, Tarentino AL, Plummer TH Jr (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204

    Article  CAS  PubMed  Google Scholar 

  23. Leduc R, Molloy SS, Thorne BA, Thomas G (1992) Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J Biol Chem 267:14304–14308

    CAS  PubMed  Google Scholar 

  24. Molloy SS, Thomas L, VanSlyke JK, Stenberg PE, Thomas G (1994) Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 13:18–33

    CAS  PubMed  Google Scholar 

  25. Espenshade PJ, Cheng D, Goldstein JL, Brown MS (1999) Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 274:22795–22804

    Article  CAS  PubMed  Google Scholar 

  26. Toure BB, Munzer JS, Basak A, Benjannet S, Rochemont J, Lazure C, Chretien M, Seidah NG (2000) Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment. J Biol Chem 275:2349–2358

    Article  CAS  PubMed  Google Scholar 

  27. Tsuji A, Ikoma T, Hashimoto E, Matsuda Y (2002) Development of selectivity of alpha1-antitrypsin variant by mutagenesis in its reactive site loop against proprotein convertase. A crucial role of the P4 arginine in PACE4 inhibition. Protein Eng 15:123–130

    Article  CAS  PubMed  Google Scholar 

  28. Creemers JW, van de Loo JW, Plets E, Hendershot LM, Van De Ven WJ, Teuchert M, Pauli I (2000) Binding of BiP to the processing enzyme lymphoma proprotein convertase prevents aggregation, but slows down maturation: dynamic palmitoylation of lymphoma proprotein convertase prolongs its half-life, but is not essential for trans-Golgi network localization. J Biol Chem 275:38842–38847

    Article  CAS  PubMed  Google Scholar 

  29. van de Loo JW, Creemers JW, Bright NA, Young BD, Roebroek AJ, Van de Ven WJ (1997) Biosynthesis, distinct post-translational modifications, and functional characterization of lymphoma proprotein convertase. J Biol Chem 272:27116–27123

    Article  PubMed  Google Scholar 

  30. Gyamera-Acheampong C, Vasilescu J, Figeys D, Mbikay M (2010) PCSK4-null sperm display enhanced protein tyrosine phosphorylation and ADAM2 proteolytic processing during in vitro capacitation. Fertil Steril 93:1112–1123

    Article  CAS  PubMed  Google Scholar 

  31. Seidah NG, Hamelin J, Mamarbachi M, Dong W, Tardos H, Mbikay M, Chretien M, Day R (1996) cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc Natl Acad Sci USA 93:3388–3393

    Article  CAS  PubMed  Google Scholar 

  32. Bergeron F, Leduc R, Day R (2000) Subtilase-like pro-protein convertases: from molecular specificity to therapeutic applications. J Mol Endocrinol 24:1–22

    Article  CAS  PubMed  Google Scholar 

  33. Ikawa M, Wada I, Kominami K, Watanabe D, Toshimori K, Nishimune Y, Okabe M (1997) The putative chaperone calmegin is required for sperm fertility. Nature 387:607–611

    Article  CAS  PubMed  Google Scholar 

  34. Yoshinaga K, Tanii I, Toshimori K (1999) Molecular chaperone calmegin localization to the endoplasmic reticulum of meiotic and post-meiotic germ cells in the mouse testis. Arch Histol Cytol 62:283–293

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi R, Yamagata K, Ikawa M, Moss SB, Okabe M (2006) Aberrant distribution of ADAM3 in sperm from both angiotensin-converting enzyme (Ace)- and calmegin (Clgn)-deficient mice. Biol Reprod 75:760–766

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Adriana Gambarotta, Mr. Pierre Bradley, and Mr. Garnet Rodger for their help in mouse maintenance and rabbit vaccination; Mrs. Haidy Tadros for the production of the two initial rPCSK4 expression vectors. We are grateful to Dr. Masahito Ikawa of Osaka University in Japan for his kind gift of testicular and sperm extracts from wild-type and calmegin-null mice. This work was funding by a grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majambu Mbikay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyamera-Acheampong, C., Sirois, F., Denis, N.J. et al. The precursor to the germ cell-specific PCSK4 proteinase is inefficiently activated in transfected somatic cells: evidence of interaction with the BiP chaperone. Mol Cell Biochem 348, 43–52 (2011). https://doi.org/10.1007/s11010-010-0635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0635-y

Keywords

Navigation