Skip to main content
Log in

Src family kinase inhibitor PP2 efficiently inhibits cervical cancer cell proliferation through down-regulating phospho-Src-Y416 and phospho-EGFR-Y1173

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tyrosine (Y) kinases inhibitors have been approved for targeted treatment of cancer. However, their clinical use is limited to some cancers and the mechanism of their action remains unclear. Previous study has indicated that PP2, a selective inhibitor of the Src family of non-receptor tyrosine kinases (nRTK), efficiently repressed cervical cancer growth in vitro and in vivo. In this regard, our aims are to explore the mechanism of PP2 on cervical cancer cell growth inhibition by investigating the suppressive divergence among PP1, PP2, and a negative control compound PP3. MTT results showed that three compounds had different inhibitory effects on proliferation of two cervical cancer cells, HeLa and SiHa, and PP2 was most efficient in a time- and dose-dependent manner. Moreover, we found 10 μM PP2 down-regulated pSrc-Y416 (P < 0.05), pEGFR-Y845 (P < 0.05), and -Y1173 (P < 0.05) expression levels, while 10 μM PP1 down-regulated pSrc-Y416 (P < 0.05) and pEGFR-Y845 (P < 0.05), but not pEGFR-Y1173; 10 μM PP3 down-regulated only pEGFR-Y1173 (P < 0.05). PP2 could modulate cell cycle arrest by up-regulating p21Cip1 and p27Kip1 in both HeLa and SiHa cells and down-regulating expression of cyclin A, and cyclin dependent kinase-2, -4 (Cdk-2, -4) in HeLa and of cyclin B and Cdk-2 in SiHa. Our results indicate that Src pathway and EGFR pathway play different roles in the proliferation of cervical cancer cells and PP2 efficiently reduces cervical cancer cell proliferation by reduction of both Src and EGFR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

nrTKs:

Non-receptor tyrosine kinases

Y:

Tyrosine

Src:

Sarcoma

EGFR:

Epidermal growth factor receptor

PP1:

4-Amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine

PP2:

4-Amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine

PP3:

4-Amino-7-phenylpyrazol[3,4-d] pyrimidine

Cdk:

Cyclin-dependent kinase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  1. Jorissen RN, Walker F, Pouliot N et al (2003) Epidermal growth factor receptor: mechanisms of activation and signaling. Exp Cell Res 284:31–53

    Article  CAS  PubMed  Google Scholar 

  2. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  CAS  PubMed  Google Scholar 

  3. Frame MC (2002) Src in cancer: deregulation and consequences for cell behavior. Biochim Biophys Acta 1602:114–130

    CAS  PubMed  Google Scholar 

  4. Susva M, Missbach M, Green J (2000) Src inhibitors: drugs for the treatment of osteoporosis, cancer or both? Trends Pharmacol Sci 21:489–495

    Article  CAS  PubMed  Google Scholar 

  5. Shimoyama T, Koizumi F, Fukumoto H et al (2006) Effects of different combinations of gefitinib and irinotecan in lung cancer cell lines expressing wild or deletional EGFR. Lung Cancer 53:13–21

    Article  PubMed  Google Scholar 

  6. Sebastian S, Settleman J, Reshkin SJ et al (2006) The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 1766:120–139

    CAS  PubMed  Google Scholar 

  7. Sato K, Nagao T, Iwasaki T et al (2003) Src-dependent phosphorylation of the EGF receptor Tyr-845 mediates Stat-p21waf1 pathway in A431 cells. Genes Cells 8:995–1003

    Article  CAS  PubMed  Google Scholar 

  8. Kong L, Deng Z, Zhao Y et al (2010) Down-regulation of phospho-non-receptor Src tyrosine kinases contributes to growth inhibition of cervical cancer cells. Med Oncol (online)

  9. Kraker AJ, Hartl BG, Amar AM et al (2000) Biochemical and cellular effects of c-Src kinase-selective pyrido[2,3-d] pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol 60:885–898

    Article  CAS  PubMed  Google Scholar 

  10. Dahl ME, Arai KI, Watanabe S (2000) Association of Lyn tyrosine kinase to the GM-CSF and IL-3 receptor common betac subunit and role of Src tyrosine kinases in DNA synthesis and anti-apoptosis. Genes Cells 5:143–153

    Article  CAS  PubMed  Google Scholar 

  11. Mócsai A, Ligeti E, Lowell CA et al (1999) Adhesion-dependent degranulation of neutrophils requires the Src-family kinases Fgr and Hck. J Immunol 162:1120–1126

    PubMed  Google Scholar 

  12. Hanke JH, Gardner JP, Dow RL et al (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 271:695–701

    Article  CAS  PubMed  Google Scholar 

  13. Wilson MB, Schreiner SJ, Choi HJ et al (2002) Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr-Abl signal transduction and oncogenesis. Oncogene 21:8075–8088

    Article  CAS  PubMed  Google Scholar 

  14. Gilmore ES, Stutts MJ, Milgram SL (2001) SRC family kinases mediate epithelial Na+ channel inhibition by endothelin. J Biol Chem 276:42610–42617

    Article  CAS  PubMed  Google Scholar 

  15. Klinger M, Kudlacek O, Seidel MG et al (2002) MAP kinase stimulation by cAMP does not require RAP1 but SRC family kinases. J Biol Chem 277:32490–32497

    Article  CAS  PubMed  Google Scholar 

  16. Normanno N, De Luca A, Bianco C et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  PubMed  Google Scholar 

  17. Ratushny V, Astsaturov I, Burtness BA et al (2009) Targeting EGFR resistance networks in head and neck cancer. Cell Signal 21:1255–1268

    Article  CAS  PubMed  Google Scholar 

  18. Araujo J, Logothetis C (2010) Dasatinib: a potent Src inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 36:492–500

    Article  CAS  PubMed  Google Scholar 

  19. Hongo T, Fujii Y, Igarashi Y (1990) An in vitro chemosensitivity test for the screening of anti-cancer drugs in childhood leukemia. Cancer 65:1263–1271

    Article  CAS  PubMed  Google Scholar 

  20. Durkin WJ, Ghanta VK, Hiramoto RN (1983) Results obtained using a vital dye exclusion assay and clinical correlations. In: Dendy PP, Hill BT (eds) Human tumor drug sensitivity testing in vitro. Academic Press, London, pp 259–268

    Google Scholar 

  21. Wang Z, Zhang Y, Banerjee S et al (2006) Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 118:1930–1936

    Article  CAS  PubMed  Google Scholar 

  22. Ramírez BS, Alpízar YA, Fernández DRH et al (2008) Anti-EGFR activation, anti-proliferative and pro-apoptotic effects of polyclonal antibodies induced by EGFR-based cancer vaccine. Vaccine 26:4918–4926

    Article  PubMed  Google Scholar 

  23. Donepudi M, Resh MD (2008) c-Src trafficking and co-localization with the EGF receptor promotes EGF ligand-independent EGF receptor activation and signaling. Cell Signal 20:1359–1367

    Article  CAS  PubMed  Google Scholar 

  24. Guerrero J, Santibaz JF, Gonzez A et al (2004) EGF receptor transactivation by urokinase receptor stimulus through a mechanism involving Src and matrix metalloproteinases. Exp Cell Res 292:201–208

    Article  CAS  PubMed  Google Scholar 

  25. Zhang DY, Wang Y, Lau CP et al (2008) Both EGFR kinase and Src-related tyrosine kinases regulate human ether-à-go-go-related gene potassium channels. Cell Signal 20:1815–1821

    Article  CAS  PubMed  Google Scholar 

  26. Slomiany BL, Slomiany A (2004) Salivary phospholipid secretion in response to [beta]-adrenergic stimulation is mediated by Src kinase-dependent epidermal growth factor receptor transactivation. Biochem Biophys Res Commun 318:247–252

    Article  CAS  PubMed  Google Scholar 

  27. Xu G, Abad MC, Connolly PJ et al (2008) 4-Amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors. Bioorganic Med Chem Lett 18:4615–4619

    Article  CAS  Google Scholar 

  28. Park EJ, Min HY, Chung HJ et al (2009) Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett 277:133–140

    Article  CAS  PubMed  Google Scholar 

  29. Yang S, Park K, Turkson J et al (2008) Ligand-independent phosphorylation of Y869 (Y845) links mutant EGFR signaling to stat-mediated gene expression. Exp Cell Res 314:413–419

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Hosoi Y, Cai K et al (2006) Src tyrosine kinase inhibitor PP2 suppresses ERK1/2 activation and epidermal growth factor receptor transactivation by X-irradiation. Biochem Biophys Res Commun 341:363–368

    Article  CAS  PubMed  Google Scholar 

  31. Randi AS, Sanchez MS, Alvarez L, de Pisarev DLK et al (2008) Hexachlorobenzene triggers AhR translocation to the nucleus, c-Src activation and EGFR transactivation in rat liver. Toxicol Lett 177:116–122

    Article  CAS  PubMed  Google Scholar 

  32. Nautiyal J, Majumder P, Patel BB et al (2009) Src inhibitor dasatinib inhibits growth of breast cancer cells by modulating EGFR signaling. Cancer Lett 283:143–151

    Article  CAS  PubMed  Google Scholar 

  33. Miller VA (2008) EGFR mutations and EGFR tyrosine kinase inhibition in non-small cell lung cancer. Semin Oncol Nurs 24:27–33

    Article  PubMed  Google Scholar 

  34. Karni R, Mizrachi S, Reiss-Sklan E et al (2003) The pp60c-Src inhibitor PP1 is non-competitive against ATP. FEBS Lett 537:47–52

    Article  CAS  PubMed  Google Scholar 

  35. Heinrich MC, Griffith DJ, Druker BJ et al (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932

    CAS  PubMed  Google Scholar 

  36. Weisberg E, Griffin JD (2000) Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 95:3498–3505

    CAS  PubMed  Google Scholar 

  37. Loitsch SM, Stein J (2010) M1806 TNF-alpha activates CREB and induces COX-2 expression by SRC-kinases, EGFR and p38 MAPK. Gastroenterology 2010 DDW Abstract Supplement 138:S-423

  38. Bondzi C, Litz J, Dent P et al (2000) Src family kinase activity is required for kit-mediated mitogen-activated protein (MAP) kinase activation. Cell Growth Differ 11:305–314

    CAS  PubMed  Google Scholar 

  39. Muñoz N, Bosch FX, de Sanjosé S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527

    Article  PubMed  Google Scholar 

  40. Stillman B (1996) Cell cycle control of DNA replication. Science 274:1659–1664

    Article  CAS  PubMed  Google Scholar 

  41. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin/cdk protein kinase activity, is related to p21. Cell 78:67–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Major State Basic Research Development Programs (2009CB521800; 2010CB529400) and the National Natural Sciences Foundation of China (30672422). We thank Ms. Xingcui Wang for the flow cytometry work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Zhang.

Additional information

Lu Kong and Zhihong Deng contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RTF 43 kb)

Supplementary material 2 (RTF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, L., Deng, Z., Shen, H. et al. Src family kinase inhibitor PP2 efficiently inhibits cervical cancer cell proliferation through down-regulating phospho-Src-Y416 and phospho-EGFR-Y1173. Mol Cell Biochem 348, 11–19 (2011). https://doi.org/10.1007/s11010-010-0632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0632-1

Keywords

Navigation