Skip to main content
Log in

Association of aorta intima permeability with myosin light chain kinase expression in hypercholesterolemic rabbits

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The development of hypercholesterolemia is a multifactorial process in which elevated plasma cholesterol levels play a central role. This study analyzed the variability of the expression and activity of myosin light chain kinase (MLCK) and endothelial permeability in the artery wall of rabbits after feeding the animals with a normal or a high-cholesterol diet. Hypercholesterolemia was induced by a high-cholesterol diet for 4 weeks. Aortas were removed and analyzed for endothelial permeability and MLCK expression. Samples of the arterial media were analyzed for MLCK activity and expression. A selective MLCK inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML7) were used in hypercholesterolemia rabbit (1 mg/kg body weight). The aortas of high-cholesterol diet rabbits showed an increase in MLCK expression and activity (nearly threefold compare with control) as well as endothelial permeability. ML7 inhibit MLC phosphorylation and MLCK activity (nearly twofold compare with control) and endothelial permeability stimulated by cholesterol. These results indicate for the first time that hypercholesterolemia may be associated with MLCK expression and activity through which endothelial permeability is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee WC, Chao WT, Yang VC (2001) Effects of high-cholesterol diet on the interendothelial clefts and the associated junctional complexes in rat aorta. Atherosclerosis 155(2):307–312

    Article  CAS  PubMed  Google Scholar 

  2. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  CAS  PubMed  Google Scholar 

  3. Schaphorst KL, Pavalko FM, Patterson CE, Garcia JG (1997) Thrombin-mediated focal adhesion plaque reorganization in endothelium: role of protein phosphorylation. Am J Respir Cell Mol Biol 17:443–455

    CAS  PubMed  Google Scholar 

  4. Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–L241

    CAS  PubMed  Google Scholar 

  5. Garcia JG, Schaphorst KL (1995) Regulation of endothelial cell gap formation and paracellular permeability. J Investig Med 43:117–126

    CAS  PubMed  Google Scholar 

  6. Turner JR, Angle JM, Black ED, Joyal JL, Sacks DB, Madara JL (1999) PKC-dependent regulation of transepithelial resistance: roles of MLC and MLC kinase. Am J Physiol 277:C554–C562

    CAS  PubMed  Google Scholar 

  7. Wysolmerski RB, Lagunoff D (1990) Involvement of myosin light-chain kinase in endothelial cell retraction. Proc Natl Acad Sci 87:16–20

    Article  CAS  PubMed  Google Scholar 

  8. Huang Q, Xu W, Ustinova E, Wu M, Childs E, Hunter F, Yuan S (2003) Myosin light chain kinase-dependent microvascular hyperpermeability in thermal injury. Shock 20:363–368

    Article  CAS  PubMed  Google Scholar 

  9. Goeckeler ZM, Wysolmerski RB (1995) Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 130:613–627

    Article  CAS  PubMed  Google Scholar 

  10. Garcia JG, Davis HW, Patterson CE (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163:510–522

    Article  CAS  PubMed  Google Scholar 

  11. Isotani E, Zhi G, Lau KS, Huang J, Mizuno Y, Persechini A, Geguchadze R, Kamm KE, Stull JT (2004) Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. Proc Natl Acad Sci 101:6279–6284

    Article  CAS  PubMed  Google Scholar 

  12. Smith L, Su X, Lin P, Zhi G, Stull JT (1999) Identification of a novel actin binding motif in smooth muscle myosin light chain kinase. J Biol Chem 274:29433–29438

    Article  CAS  PubMed  Google Scholar 

  13. Sheldon R, Moy A, Lindsley K, Shasby S, Shasby DM (1993) Role of myosin light chain phosphorylation in endothelial cell retraction. Am J Physiol Lung Cell Mol Physiol 265:L606–L612

    CAS  Google Scholar 

  14. Tinsley JH, Teasdale NR, Yuan SY (2004) Myosin light chain phosphorylation and pulmonary endothelial cell hyperpermeability in burns. Am J Physiol Lung Cell Mol Physiol 286:L841–L847

    Article  CAS  PubMed  Google Scholar 

  15. Tinsley JH, De Lanerolle P, Wilson E, Ma W, Yuan SY (2000) Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am J Physiol 279:C1285–C1289

    CAS  Google Scholar 

  16. Yuan Y, Huang Q, Wu HM (1997) Myosin light chain phosphorylation: modulation of basal and protein kinase-stimulated microvascular permeability. Am J Physiol 272:H1437–H1443

    CAS  PubMed  Google Scholar 

  17. Yuan SY, Wu MH, Ustinova EE, Guo M, Tinsley JH, De Lanerolle P, Xu W (2002) Myosin light chain phosphorylation in neutrophil-stimulated coronary microvascular leakage. Circ Res 90:1214–1221

    Article  CAS  PubMed  Google Scholar 

  18. Vasile E, Antohe F, Simionescu M, Simionescu N (1989) Transportpathways of beta-VLDL by aortic endothelium of normal and hypercholesterolemic rabbits. Atherosclerosis 75:195–210

    Article  CAS  PubMed  Google Scholar 

  19. Kao CH, Chen JK, Kuo JS, Yang VC (1995) Visualization of the transport pathways of low density lipoproteins across the endothelial cells in the branched regions of rat arteries. Atherosclerosis 116:111–115

    Article  Google Scholar 

  20. Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis: accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbits. Am J Pathol 123:109–125

    CAS  PubMed  Google Scholar 

  21. Zhu HQ, Wang Y, Hu RL, Ren B, Zhou Q, Jiang ZK, Gui SY (2003) Distribution and expression of non-muscle myosin light chain kinase in rabbit livers. World J Gastroenterol 9:2715–2719

    CAS  PubMed  Google Scholar 

  22. Kim Y, Chang S (2004) Modulation of actomyosin contractility by myosin light chain phosphorylation/dephosphorylation through Rho GTPases signaling specifies axon formation in neurons. Biochem Biophys Res Commun 318:579–587

    Article  CAS  PubMed  Google Scholar 

  23. Deng JT, Van Lierop JE, Sutherland C (2001) Walsh MP Ca2+-independent smooth muscle contraction. A novel function for integrin-linked kinase. J Biol Chem 276:16365–16373

    Article  CAS  PubMed  Google Scholar 

  24. Tubman LA, MacIntosh BR, Maki WA (1996) Myosin light chain phosphorylation and posttetanic potentiation in fatigued skeletal muscle. Pflugers Arch 431:882–887

    CAS  PubMed  Google Scholar 

  25. Zhou H, Murthy KS (2004) Distinctive G protein-dependent signaling in smooth muscle by sphingosine 1-phosphate receptors S1P1 and S1P2. Am J Physiol Cell Physiol 286:C1130–C1138

    Article  CAS  PubMed  Google Scholar 

  26. Rong JX, Rangaswamy S, Shen L, Dave R, Chang YH, Peterson H, Hodis HN, Chisolm GM, Sevanian A (1998) Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation. Arterioscler Thromb Vasc Biol 18:1885–1894

    CAS  PubMed  Google Scholar 

  27. Liu HR, Tao L, Gao E, Lopez BL, Christopher TA, Willette RN, Ohlstein EH, Yue TL, Ma XL (2004) Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion. Cardiovasc Res 62:135–144

    Article  CAS  PubMed  Google Scholar 

  28. Shepro D (1988) The American Microcirculatory Society Landis Award lecture: endothelial cells, inflammatory edema, and the microvascular barrier: comments by a “free radical”. Microvasc Res 35:246–264

    Article  CAS  PubMed  Google Scholar 

  29. Abraham D, Taghavi S, Riml P et al (2002) VEGF-A and -C but not -B mediate increased vascular permeability in preserved lung grafts. Transplantation 73(11):1703–1706

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 30971226 and 81070232) and Natural Science Foundation of Anhui province of China (No. 090413116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Additional information

Hua-Qing Zhu and Qing Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, HQ., Zhou, Q., Jiang, ZK. et al. Association of aorta intima permeability with myosin light chain kinase expression in hypercholesterolemic rabbits. Mol Cell Biochem 347, 209–215 (2011). https://doi.org/10.1007/s11010-010-0630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0630-3

Keywords

Navigation