Skip to main content
Log in

Myocardial fibrosis and TGFB expression in hyperhomocysteinemic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia, characterized by an elevated plasma homocysteine concentration, leads to several clinical manifestations and particularly cardiovascular diseases. Experimental models of hyperhomocysteinemia revealed several tissue injuries including heart fibrosis and ventricular hypertrophy. In order to analyze the molecular mechanisms link to these morphological alterations, a mild hyperhomocysteinemia was induced in rats via a chronic methionine administration. Effects of methionine administration were examined by histological analysis with Sirius red staining, histomorphometric analysis, zymography, and immunoblotting. Hyperhomocysteinemia due to methionine administration produces an interstitial myocardial fibrosis and a ventricular cardiomyocyte hypertrophy, which were associated with increased expression of transforming growth factor-beta1 (TGFβ1), tissue inhibitors of metalloproteinase (TIMP) 2, and JNK activation. However, the matrix metalloproteinase 2 activity was decreased in the hearts of hyperhomocysteinemic rats. Moreover, the TIMP1 protein expression was decreased, and the TIMP1–MMP1 balance was shifted. Remodeling in cardiac tissue observed in rat model of mild hyperhomocysteinemia is associated with a dysregulation in extracellular matrix degradation which results, at least in part, from enhancement of TGFβ1 level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen J, Zhang I, Cheng L, Li Y (2001) The effect of polymorphisms of MTHFR gene and vitamin B on hyperhomocysteinemia. J Tongji Med Univ 21:17–20

    Article  PubMed  Google Scholar 

  2. Tur MD, De Maistre E, Franck P, Rolland MO, Fremont S, Lecompte T, Vidaihet M (2004) Delayed diagnosis of homocystinuria by major deficiency in cystathionine beta synthase. Rev Med Int 25:150–153

    Article  Google Scholar 

  3. Wilcken DE, Wilcken BB (1998) Vitamins and homocysteine in cardiovascular disease and aging. Ann NY Acad Sci 854:361–370

    Article  CAS  PubMed  Google Scholar 

  4. Racek J, Rusnáková H, Trefil L, Siala KK (2005) The influence of folate and antioxidants on homocysteine levels and oxidative stress in patients with hyperlipidemia and hyperhomocysteinemia. Physiol Res 54:87–95

    CAS  PubMed  Google Scholar 

  5. Chan SJ, Chang CN, Hsu JC, Lee YS, Shen CH (2002) Homocysteine, vitamin B6, and lipid in cardiovascular disease. Nutrition 18:595–598

    Article  CAS  PubMed  Google Scholar 

  6. Marcucci R, Betti I, Cecchi E, Poli D, Giusti B, Fedi S, Lapini I, Abbate R, Gensini GF, Prisco D (2004) Hyperhomocysteinemia and vitamin B6 deficiency: new risk markers for nonvalvular atrial fibrillation? Am Heart J 148:456–461

    Article  CAS  PubMed  Google Scholar 

  7. Bagi Z, Ungvari Z, Szollár L, Koller A (2001) Flow-induced constriction in arterioles of hyperhomocysteinemic rats is due to impaired nitric oxide and enhanced thromboxane A(2) mediation. Arterioscler Thromb Vasc Biol 21:233–237

    CAS  PubMed  Google Scholar 

  8. Miller A, Mujumdar V, Shek E, Guillot J, Angelo M, Palmer L, Tyagi SC (2000) Hyperhomocyst(e)inemia induces multiorgan damage. Heart Vessels 15:135–143

    Article  CAS  PubMed  Google Scholar 

  9. Devi S, Kennedy RH, Joseph L, Shekhawat NS, Melchert RB, Joseph J (2006) Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc Pathol 15:75–82

    Article  CAS  PubMed  Google Scholar 

  10. Kundu S, Kumar M, Sen U, Mishra PK, Tyagi N, Metreveli N, Lominadze D, Rodriguez W, Tyagi SC (2009) Nitrotyrosinylation, remodeling and endothelial-myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. J Cell Biochem 106:119–126

    Article  CAS  PubMed  Google Scholar 

  11. Joseph J, Joseph L, Devi S, Kennedy RH (2008) Effect of anti-oxidant treatment on hyperhomocysteinemia-induced myocardial fibrosis and diastolic dysfunction. J Heart Lung Transplant 27:1237–1241

    Article  PubMed  Google Scholar 

  12. Li H, Simon H, Bocan TM, Peterson JT (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46:298–306

    Article  CAS  PubMed  Google Scholar 

  13. Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FG (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–H371

    CAS  PubMed  Google Scholar 

  14. Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Böhm M, Pauschinger M, Schultheiss HP, Tschöpe C (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103:319–327

    Article  PubMed  Google Scholar 

  15. Bescond A, Augier T, Chareyre C, Garçon D, Hornebeck W, Charpiot P (1999) Influence of homocysteine on matrix metalloproteinase-2: activation and activity. Biochem Biophys Res Commun 263:498–503

    Article  CAS  PubMed  Google Scholar 

  16. Shastry S, Tyagi SC (2004) Homocysteine induces metalloproteinase and shedding of beta-1 integrin in microvessel endothelial cells. J Cell Biochem 93:207–213

    Article  CAS  PubMed  Google Scholar 

  17. Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A, Martínez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401:318–320

    Article  CAS  PubMed  Google Scholar 

  18. Seeland U, Haeuseler C, Hinrichs R, Rosenkranz S, Pfitzner T, Scharffetter-Kochanek K, Böhm M (2002) Myocardial fibrosis in transforming growth factor-beta(1) (TGF-beta(1)) transgenic mice is associated with inhibition of interstitial collagenase. Eur J Clin Invest 32:295–303

    Article  CAS  PubMed  Google Scholar 

  19. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  CAS  PubMed  Google Scholar 

  20. Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel W, Stern DM, Schmidt AM (2001) Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 107:675–683

    Article  CAS  PubMed  Google Scholar 

  21. Zulli A, Hare DL, Buxton BF, Black MJ (2006) The combination of high dietary methionine plus cholesterol induces myocardial fibrosis in rabbits. Atherosclerosis 185:278–281

    Article  CAS  PubMed  Google Scholar 

  22. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H890–H897

    Article  CAS  PubMed  Google Scholar 

  23. Joseph J, Joseph L, Shekhawat NS, Devi S, Wang J, Melchert RB, Hauer-Jensen M, Kennedy RH (2003) Hyperhomocysteinemia leads to pathological ventricular hypertrophy in normotensive rats. Am J Physiol Heart Circ Physiol 285:H679–H686

    CAS  PubMed  Google Scholar 

  24. Robert K, Nehmé J, Bourdon E, Pivert G, Friguet B, Delcayre C, Delabar JM, Janel N (2005) Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128:1405–1415

    Article  CAS  PubMed  Google Scholar 

  25. Hamelet J, Maurin N, Fulchiron R, Delabar JM, Janel N (2007) Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement. Exp Mol Pathol 83:249–253

    Article  CAS  PubMed  Google Scholar 

  26. Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS, Dos Santos MF, Wyse AT (2009) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27:337–344

    Article  PubMed  Google Scholar 

  27. Yi F, Xia M, Li N, Zhang C, Tang L, Li PL (2009) Contribution of guanine nucleotide exchange factor Vav2 to hyperhomocysteinemic glomerulosclerosis in rats. Hypertension 53:90–96

    Article  CAS  PubMed  Google Scholar 

  28. Dai J, Li W, Chang L, Zhang Z, Tang C, Wang N, Zhu Y, Wang X (2006) Role of redox factor-1 in hyperhomocysteinemia-accelerated atherosclerosis. Free Radic Biol Med 41:1566–1577

    Article  CAS  PubMed  Google Scholar 

  29. Park HK, Park SJ, Kim CS, Paek YW, Lee JU, Lee WJ (2001) Enhanced gene expression of renin-angiotensin system, TGF-beta1, endothelin-1 and nitric oxide synthase in right-ventricular hypertrophy. Pharmacol Res 43:265–273

    Article  CAS  PubMed  Google Scholar 

  30. Majors A, Ehrhart LA, Pezacka EH (1997) Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol 17:2074–2081

    CAS  PubMed  Google Scholar 

  31. García-Tevijano ER, Berasain C, Rodríguez JA, Corrales FJ, Arias R, Martín-Duce A, Caballería J, Mato JM, Avila MA (2001) Hyperhomocysteinemia in liver cirrhosis: mechanisms and role in vascular and hepatic fibrosis. Hypertension 38:1217–1221

    Article  PubMed  Google Scholar 

  32. Zou CG, Gao SY, Zhao YS, Li SD, Cao XZ, Zhang Y, Zhang KQ (2009) Homocysteine enhances cell proliferation in hepatic myofibroblastic stellate cells. J Mol Med 87:75–84

    Article  CAS  PubMed  Google Scholar 

  33. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103:60–68

    Article  CAS  PubMed  Google Scholar 

  34. Zhai Y, Gao X, Wu Q, Peng L, Lin J, Zuo Z (2008) Fluvastatin decreases cardiac fibrosis possibly through regulation of TGF-beta(1)/Smad 7 expression in the spontaneously hypertensive rats. Eur J Pharmacol 587:196–203

    Article  CAS  PubMed  Google Scholar 

  35. Stawowy P, Margeta C, Kallisch H, Seidah NG, Chrétien M, Fleck E, Graf K (2004) Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac fibroblasts by TGF-beta1 involves furin-convertase. Cardiovasc Res 63:87–97

    Article  CAS  PubMed  Google Scholar 

  36. Solini A, Santini E, Nannipieri M, Ferrannini E (2006) High glucose and homocysteine synergistically affect the metalloproteinases-tissue inhibitors of metalloproteinases pattern, but not TGFB expression, in human fibroblasts. Diabetologia 49:2499–2506

    Article  CAS  PubMed  Google Scholar 

  37. Doronzo G, Russo I, Mattiello L, Trovati M, Anfossi G (2005) Homocysteine rapidly increases matrix metalloproteinase-2 expression and activity in cultured human vascular smooth muscle cells. Role of phosphatidyl inositol 3-kinase and mitogen activated protein kinase pathways. Thromb Haemost 6:1285–1293

    Google Scholar 

  38. Ovechkin AV, Tyagi N, Sen U, Lominadze D, Steed MM, Moshal KS, Tyagi SC (2006) 3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. Am J Physiol Lung Cell Mol Physiol 5:L905–L9011

    Article  Google Scholar 

  39. Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d’Ortho MP, Murphy G (1998) The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 273:871–880

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by an EU grant AnEUploïdie. Lamia Raaf is supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique. Christophe Noll is supported by a fellowship from the Ministère de l’Enseignement supérieur et de la Recherche. We acknowledge the support from the technical platform “Quantitative microscopy with unbiased stereology” (Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot-Paris 7, CNRS EAC 4413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Janel.

Additional information

The last two authors share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raaf, L., Noll, C., Cherifi, M.E.H. et al. Myocardial fibrosis and TGFB expression in hyperhomocysteinemic rats. Mol Cell Biochem 347, 63–70 (2011). https://doi.org/10.1007/s11010-010-0612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0612-5

Keywords

Navigation