Skip to main content

Advertisement

Log in

Abnormalities in periodontal and salivary tissues in conditional presenilin 1 and presenilin 2 double knockout mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We used forebrain-specific conditional presenilin 1 (PS1) and presenilin 2 (PS2) double knockout mice (dKO mice), which exhibit neurodegenerative disease-like symptoms, including inflammation of the brain and periphery, to investigate whether periodontal and salivary tissues display alterations. Mandibles were dissected for alveolar bone height analysis. Maxillae were fixed and decalcified for histological observation and osteoclast detection. Submandibular glands were fixed for histological observation. The submandibular gland and the gingiva of the mandibular incisor teeth were used to assay inflammatory mediators. At 9 months, the number of osteoclasts had significantly increased in the periodontal ligament and the periodontal tissues exhibited obvious histomorphological abnormalities in the dKO mice compared to the control mice at the same age. Alveolar bone loss in dKO mice increased with age. The salivary tissues in dKO mice exhibited obvious age-dependent histomorphological abnormalities. The levels of the inflammatory mediators IL-1β, TNF-α, and GM-CSF in the submandibular gland and gingiva also increased in an age-dependent manner. These findings suggest that inflammation in the dKO brain could expand to the periphery, including the oral tissue, which could ultimately induce abnormalities in the periodontal and salivary tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haass C (1997) Presenilins: genes for life and death. Neuron 18(5):687–690

    Article  CAS  PubMed  Google Scholar 

  2. Price DL, Sisodia SS (1998) Mutant genes in familial alzheimer’s disease and transgenic models. Annu Rev Neurosci 21:479–505

    Article  CAS  PubMed  Google Scholar 

  3. Suh YH, Checler F (2002) Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in alzheimer’s disease. Pharmacol Rev 54(3):469–525

    Article  CAS  PubMed  Google Scholar 

  4. Lee MK, Slunt HH, Martin LJ, Thinakaran G, Kim G, Gandy SE, Seeger M, Koo E, Price DL, Sisodia SS (1996) Expression of presenilin 1 and 2 (ps1 and ps2) in human and murine tissues. J Neurosci 16(23):7513–7525

    CAS  PubMed  Google Scholar 

  5. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T et al (1995) Familial alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the alzheimer’s disease type 3 gene. Nature 376(6543):775–778

    Article  CAS  PubMed  Google Scholar 

  6. Li T, Ma G, Cai H, Price DL, Wong PC (2003) Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci 23(8):3272–3277

    CAS  PubMed  Google Scholar 

  7. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and cns defects in presenilin-1-deficient mice. Cell 89(4):629–639

    Article  CAS  PubMed  Google Scholar 

  8. Steiner H, Duff K, Capell A, Romig H, Grim MG, Lincoln S, Hardy J, Yu X, Picciano M, Fechteler K, Citron M, Kopan R, Pesold B, Keck S, Baader M, Tomita T, Iwatsubo T, Baumeister R, Haass C (1999) A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J Biol Chem 274(40):28669–28673

    Article  CAS  PubMed  Google Scholar 

  9. Donoviel DB, Hadjantonakis AK, Ikeda M, Zheng H, Hyslop PS, Bernstein A (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 13(21):2801–2810

    Article  CAS  PubMed  Google Scholar 

  10. Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32(5):911–926

    Article  CAS  PubMed  Google Scholar 

  11. Beglopoulos V, Sun X, Saura CA, Lemere CA, Kim RD, Shen J (2004) Reduced beta-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J Biol Chem 279(45):46907–46914

    Article  CAS  PubMed  Google Scholar 

  12. Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ III, Kandel ER, Duff K, Kirkwood A, Shen J (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42(1):23–36

    Article  CAS  PubMed  Google Scholar 

  13. Feng R, Wang H, Wang J, Shrom D, Zeng X, Tsien JZ (2004) Forebrain degeneration and ventricle enlargement caused by double knockout of alzheimer’s presenilin-1 and presenilin-2. Proc Natl Acad Sci USA 101(21):8162–8167

    Article  CAS  PubMed  Google Scholar 

  14. Jiang X, Zhang D, Shi J, Chen Y, Zhang P, Mei B (2009) Increased inflammatory response both in brain and in periphery in presenilin 1 and presenilin 2 conditional double knock-out mice. J Alzheimers Dis 18(3):515–523

    CAS  PubMed  Google Scholar 

  15. Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik-Sobanska L, de Leon MJ (2008) Inflammation and alzheimer’s disease: possible role of periodontal diseases. Alzheimers Dement 4(4):242–250

    Article  CAS  PubMed  Google Scholar 

  16. Dong S, Li C, Wu P, Tsien JZ, Hu Y (2007) Environment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient mice. Eur J Neurosci 26(1):101–112

    Google Scholar 

  17. Page RC, Schroeder HE (1982) Periodontitis in man and other animals: a comparative review. (1st ed.) edn. Karger, Basel, Switzerland

    Google Scholar 

  18. Yamamoto T, Domon T, Takahashi S, Islam N, Suzuki R, Wakita M (1998) The structure and function of periodontal ligament cells in acellular cementum in rat molars. Ann Anat 180(6):519–522

    CAS  PubMed  Google Scholar 

  19. Cooper JS, Fu K, Marks J, Silverman S (1995) Late effects of radiation therapy in the head and neck region. International journal of radiation oncology, biology. Physics 31(5):1141–1164

    CAS  Google Scholar 

  20. Gasson JC (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77(6):1131–1145

    CAS  PubMed  Google Scholar 

  21. Thomas J, Liu F, Link DC (2002) Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 9(3):183–189

    Article  PubMed  Google Scholar 

  22. Wise GE, King GJ (2008) Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87(5):414–434

    Article  CAS  PubMed  Google Scholar 

  23. Sherry B, Tekamp-Olson P, Gallegos C, Bauer D, Davatelis G, Wolpe SD, Masiarz F, Coit D, Cerami A (1988) Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J Exp Med 168(6):2251–2259

    Article  CAS  PubMed  Google Scholar 

  24. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. Faseb J 5(8):2145–2154

    CAS  PubMed  Google Scholar 

  25. Delaisse JM, Engsig MT, Everts V, del Carmen Ovejero M, Ferreras M, Lund L, Vu TH, Werb Z, Winding B, Lochter A, Karsdal MA, Troen T, Kirkegaard T, Lenhard T, Heegaard AM, Neff L, Baron R, Foged NT (2000) Proteinases in bone resorption: obvious and less obvious roles. Clinica Chimica Acta Int J Clin Chem 291(2):223–234

    Article  CAS  Google Scholar 

  26. Morgan MM, Clayton CC, Heinricher MM (2004) Dissociation of hyperalgesia from fever following intracerebroventricular administration of interleukin-1beta in the rat. Brain Res 1022(1–2):96–100

    Article  CAS  PubMed  Google Scholar 

  27. Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, McCracken R, Avioli LV (1991) Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci USA 88(12):5134–5138

    Article  CAS  PubMed  Google Scholar 

  28. Locksley RM, Killeen N, Lenardo MJ (2001) The tnf and tnf receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We deeply appreciate the generosity of Dr. Joe Tsien (Medical College of Georgia, USA) in providing the PS1/PS2 double knockout mice. This study was supported by grants from National Natural Science Foundation of China (30840031, 30870790, 30970726, 81070876) and from Shanghai (0852NM03600, 10JC1411200, 11ZZ38), and was supported, in part, by the 973 Project (2009CB918402) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Mei or Jiansheng Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, W., Ji, T., Wang, L. et al. Abnormalities in periodontal and salivary tissues in conditional presenilin 1 and presenilin 2 double knockout mice. Mol Cell Biochem 347, 13–20 (2011). https://doi.org/10.1007/s11010-010-0607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0607-2

Keywords

Navigation