Skip to main content
Log in

The transcriptional regulation of regucalcin gene expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5′-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic liver injury with hepatitis. Regucalcin has been proposed to be a key molecule in cellular regulation and metabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Williamson JR, Cooper RK, Hoek JB (1981) Role of calcium in the hormonal regulation of liver metabolism. Biochim Biophys Acta 639:243–295

    PubMed  CAS  Google Scholar 

  2. Reinhart PH, Taylor WM, Bygrave FL (1984) The role of calcium ions in the mechanisms of action of α-adrenergic agonists in rat liver. Biochem J 223:1–13

    PubMed  CAS  Google Scholar 

  3. Kraus-Friedman N, Feng L (1980) The role of intracellular Ca2+ in the regulation of gluconeogenesis. Metabolism 48:389–403

    Google Scholar 

  4. Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 202:19–27

    Article  Google Scholar 

  5. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi M, Yamamoto T (1978) Purification of calcium binding substance from soluble fraction of normal rat liver. Chem Pharm Bull 26:1915–1918

    PubMed  CAS  Google Scholar 

  7. Yamaguchi M, Sugii K (1981) Properties of calcium-binding protein isolated from the soluble fraction of normal rat liver. Chem Pharm Bull 29:567–570

    PubMed  CAS  Google Scholar 

  8. Yamaguchi M (1988) Physicochemical properties of calcium-binding protein isolated from rat liver cytosol: Ca2+-induced conformational changes. Chem Pharm Bull 36:286–290

    PubMed  CAS  Google Scholar 

  9. Shimokawa N, Yamaguchi M (1993) Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett 327:251–255

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi M, Yoshida H (1985) Regulatory effect of calcium-binding protein isolated from rat liver cytosol on activation of fructose 1,6-diphosphatase by Ca2+-calmodulin. Chem Pharm Bull 33:4489–4493

    PubMed  CAS  Google Scholar 

  11. Yamaguchi M, Shibano H (1987) Calcium-binding protein isolated from rat liver cytosol reverses activation of pyruvate kinase by Ca2+. Chem Pharm Bull 35:2025–2029

    PubMed  CAS  Google Scholar 

  12. Yamaguchi M, Shibano H (1987) Effect of calcium-binding protein on the activation of phosphorylase a in rat hepatic particulate glycogen by Ca2+. Chem Pharm Bull 35:2581–2584

    PubMed  CAS  Google Scholar 

  13. Yamaguchi M, Shibano H (1987) Reversible effect of calcium-binding protein on the Ca2+-induced activation of succinate dehydrogenase in rat liver mitochondria. Chem Pharm Bull 35:3766–3770

    PubMed  CAS  Google Scholar 

  14. Yamaguchi M, Mori S (1988) Effect of Ca2+ and Zn2+ on 5′-nucleotidase activity in rat liver plasma membranes: hepatic calcium-binding protein (regucalcin) reverses the Ca2+ effect. Chem Pharm Bull 36:321–325

    PubMed  CAS  Google Scholar 

  15. Fujita T, Uchida K, Maruyama N (1992) Purification of senescence marker protein-30 (SMP30) and its androgen-independent decrease with age in the rat liver. Biochim Biophys Acta 1116:122–128

    PubMed  CAS  Google Scholar 

  16. Fujita T, Shirasawa T, Uchida K, Maruyama N (1992) Isolation of cDNA clone encoding rat senescence marker protein-30 (SMP30) and its tissue distribution. Biochim Biophys Acta 1132:297–305

    PubMed  CAS  Google Scholar 

  17. Yamaguchi M (1992) A novel Ca2+-binding protein regucalcin and calcium inhibition. Regulatory role in liver cell function. In: Kohama K (ed) Calcium inhibition. Japan Sci Soc Press, Tokyo and CRC Press, Boca Raton, pp 19–41

  18. Yamaguchi M (1998) Role of calcium-binding protein regucalcin in regenerating rat liver. J Gastroen Hepatol 13(Suppl.):S106–S112

    CAS  Google Scholar 

  19. Yamaguchi M (2000) Role of regucalcin in calcium signaling. Life Sci 66:1769–1780

    Article  PubMed  CAS  Google Scholar 

  20. Yamaguchi M (2002) The role of regucalcin in nuclear regulation of regenerating liver. Biochem Biophys Res Commun 276:1–6 2000

    Article  CAS  Google Scholar 

  21. Yamaguchi M (2002) Impact of aging on calcium channels and pumps. In: Mattson MP (ed) Calcium homeostasis and signaling in aging. Elsevier, Amsterdam, pp 47–65

    Chapter  Google Scholar 

  22. Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function. Int J Mol Med 15:372–389

    Google Scholar 

  23. Shimokawa N, Yamaguchi M (1992) Calcium administration stimulates the expression of calcium-binding protein regucalcin mRNA in rat liver. FEBS Lett 305:151–154

    Article  PubMed  CAS  Google Scholar 

  24. Yamaguchi M, Isogai M (1993) Tissue concentration of calcium-binding protein regucalcin in rats by enzyme-linked immunoadsorbent assay. Mol Cell Biochem 122:65–68

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi M, Hamano T, Misawa H (2000) Expression of Ca2+-binding protein regucalcin in rat brain neurons: inhibitory effect on protein phosphatase activity. Brain Res Bull 52:343–348

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi M, Nakajima R (2002) Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle. J Cell Biochem 86:184–193

    Article  PubMed  CAS  Google Scholar 

  27. Yamaguchi M, Misawa H, Uchiyama S, Morooka Y, Tsurusaki Y (2002) Role of endogenous regucalcin in bone metabolism: bone loss is induced in regucalcin transgenic rats. Int J Mol Med 10:377–383

    PubMed  CAS  Google Scholar 

  28. Maia CJ, Santos CR, Schmitt F, Socorro S (2008) Regucalcin is expressed in rat mammary gland and prostate and down-regulated by 17beta-estradiol. Mol Cell Biochem 311:81–86

    Article  PubMed  CAS  Google Scholar 

  29. Maia CJ, Santos CR, Schmitt F, Socorro S (2009) Regucalcin is under-expressed in human breast and prostate cancers: effect of sex steroid hormones. J Cell Biochem 107:667–676

    Article  PubMed  CAS  Google Scholar 

  30. Tsurusaki Y, Misawa H, Yamaguchi M (2000) Translocation of regucalcin to rat liver nucleus: involvement of nuclear protein kinase and protein phosphatase regulation. Int J Mol Med 6:655–660

    PubMed  CAS  Google Scholar 

  31. Nakagawa T, Yamaguchi M (2008) Nuclear localization of regucalcin is enhanced in culture with protein kinase C activation in cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 21:605–610

    PubMed  CAS  Google Scholar 

  32. Kondo Y, Inai Y, Sato Y, Handa S, Kubo S, Shimokado K, Goto S, Nishikimi M, Maruyama N, Ishigami A (2006) Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci USA 103:5723–5728

    Article  PubMed  CAS  Google Scholar 

  33. Yamaguchi M, Igarashi A, Uchiyama S, Sawada N (2004) Hyperlipidemia is induced in regucalcin transgenic rats with increasing age. Int J Mol Med 14:647–651

    PubMed  CAS  Google Scholar 

  34. Yamaguchi M (2010) Regucalcin and metabolic disorder: osteoporosis and hyperlipidemia are induced in regucalcin transgenic rats. Mol Cell Biochem 327:53–63

    Google Scholar 

  35. Yamaguchi M, Isogai M, Kato S, Mori S (1991) Immunohistochemical demonstration of calcium-binding protein regucalcin in the tissues of rats: the protein localizes in liver and brain. Chem Pharm Bell 36:1601–1603

    Google Scholar 

  36. Chakraborti S, Bahnson BJ (2010) Crystal structure of human senescence marker protein 30: insights linking structural, enzymatic, and physiological functions. Biochemistry 49:3436–3444

    Article  PubMed  CAS  Google Scholar 

  37. Tufty RM, Kretsinger RH (1975) Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science 187:379–388

    Article  Google Scholar 

  38. Hilt DC, Kligman D (1991) The S100 protein family: a biochemical and functional overview. In: Heizmann CW (ed) Novel calcium-binding proteins. Springer, Berlin, pp 65–103

    Google Scholar 

  39. Heizmann CW, Hunziker W (1991) Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sci 16:98–103

    Article  PubMed  CAS  Google Scholar 

  40. Misawa H, Yamaguchi M (2000) Transcript heterogeneity of the human gene for Ca2+-binding protein regucalcin. Int J Mol Med 5:283–287

    PubMed  CAS  Google Scholar 

  41. Murata T, Yamaguchi M (1997) Molecular cloning of the cDNA coding for regucalcin and its mRNA expression in mouse liver: the expression is stimulated by calcium administration. Mol Cell Biochem 173:127–133

    Article  PubMed  CAS  Google Scholar 

  42. Misawa H, Yamaguchi M (2000) The gene of Ca2+-binding protein regucalcin is highly conserved in vertebrate species. Int J Mol Med 6:191–196

    PubMed  CAS  Google Scholar 

  43. Nakajima Y, Natori S (2000) Identification and characterization of an anterior fat body protein in an insect. J Biochem 127:901–908

    PubMed  CAS  Google Scholar 

  44. Nikapitiya C, De Zoysa M, Kang HS, Oh C, Whang I, Lee J (2008) Molecular characterization and expression analysis of regucalcin in disk abalone (Haliotis discus discus): intramuscular calcium administration stimulates the regucalcin mRNA expression. Comp Biochem Physiol Part B 150:117–124

    Article  CAS  Google Scholar 

  45. Kawasaki Hayama S, Kretsinger RH (1998) Classification and evolution of EF-hand proteins. Biometals 11:277–295

    Article  Google Scholar 

  46. Shimokawa N, Isogai M, Yamaguchi M (1995) Specific species and tissue differences for the gene expression of calcium-binding protein regucalcin. Mol Cell Biochem 143:67–71

    Article  PubMed  CAS  Google Scholar 

  47. Perier F, Efstratiadis A, Lomedico P, Gilbert W, Kolonder R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    Article  Google Scholar 

  48. Shimokawa N, Matsuda Y, Yamaguchi M (1995) Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol Cell Biochem 151:157–163

    Article  PubMed  CAS  Google Scholar 

  49. Thiselton DL, McDowall J, Brandau O, Ramser J, d’Esposito F, Bhattacharga SS, Ross MT, Hardcastle AJ, Meindl A (2002) An integrated, functionally annotated gene map of the DXS8026-ELK1 internal on human Xp11.3-Xp11.23: potential hotspot for neurogenetic disorders. Genomics 79:560–572

    Article  PubMed  CAS  Google Scholar 

  50. Yamaguchi M, Makino R, Shimokawa N (1996) The 5′end sequences and exon organization in rat regucalcin gene. Mol Cell Biochem 165:145–150

    Article  PubMed  CAS  Google Scholar 

  51. Maniatis T, Goodbourn S, Fisher JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245

    Article  PubMed  CAS  Google Scholar 

  52. Murata T, Yamaguchi M (1998) Tissue-specific binding nuclear factors to the 5′-flanking region of the rat gene for calcium-binding protein regucalcin. Mol Cell Biochem 178:305–310

    Article  PubMed  CAS  Google Scholar 

  53. Murata T, Yamaguchi M (1999) Promoter characterization of the rat gene for Ca2+-binding protein regucalcin. Transcriptional regulation by signaling factors. J Biol Chem 274:1277–1285

    Article  PubMed  CAS  Google Scholar 

  54. Esteve L, Haby C, Rodeau JL, Humblot N, Aunis D, Zwiller J (1995) Induction of c-fos, jun B and egr-1 expression by haloperidol in PC12 cells: involvement of calcium. Neuropharmacology 34:439–448

    Article  PubMed  CAS  Google Scholar 

  55. Bachs O, Carafoli E (1987) Calmodulin and calmodulin-binding proteins in liver nuclei. J Biol Chem 262:10786–10790

    PubMed  CAS  Google Scholar 

  56. Murata T, Yamaguchi M (1998) Ca2+ administration stimulates the binding of AP-1 factor to the 5′-flanking region of the rat gene for the Ca2+-binding protein regucalcin. Biochem J 329:157–163

    PubMed  CAS  Google Scholar 

  57. Curran T (1991) Fos and Jun: intermediary transcription factors. In: Cohen P, Foulkes JG (eds) The hormonal control of gene transcription. Elsevier, New York, pp 295–308

    Google Scholar 

  58. Rahmsdorf HJ, Herrlich P (1990) Regulation of gene expression by tumor promoters. Pharmacol Ther 48:157–188

    Article  PubMed  CAS  Google Scholar 

  59. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  PubMed  CAS  Google Scholar 

  60. Karin L, Smeal T (1992) Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem Sci 17:418–422

    Article  PubMed  CAS  Google Scholar 

  61. Kim S-J, Kahn CR (1994) Insulin stimulates phosphorylation of c-Jun, c-Fos, and Fos-related proteins in cultured adipocytes. J Biol Chem 269:11887–11892

    PubMed  CAS  Google Scholar 

  62. Meyer TE, Habener JF (1993) Cyclic adenosine 3′,5′-monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocr Rev 14:269–290

    PubMed  CAS  Google Scholar 

  63. Roesler WJ, Vandenbark GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263:9063–9066

    PubMed  CAS  Google Scholar 

  64. Faisst S, Meyer S (1992) Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res 20:3–26

    Article  PubMed  CAS  Google Scholar 

  65. Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription. Endocr Rev 14:459–479

    PubMed  CAS  Google Scholar 

  66. Nakajima M, Murata T, Yamaguchi M (1999) Expression of calcium- binding protein regucalcin mRNA in the cloned rat hepatoma cells (H4-II-E) is stimulated through Ca2+ signaling factors: involvement of protein kinase C. Mol Cell Biochem 198:101–107

    Article  PubMed  CAS  Google Scholar 

  67. Yamaguchi M, Nakajima M (1999) Involvement of intracellular signaling factors in the serum-enhanced Ca2+binding protein regucalcin mRNA expression in the cloned rat hepatoma cells (H4- II-E). J Cell Bichem 74:81–89

    Article  CAS  Google Scholar 

  68. Vincenzi FF (1982) Pharmacology of calmodulin antagonism. In: Gogfraind T, Albertini A, Paoletti R (eds) Calcium modulators. Elsevier Biomedical Press, Amsterdam, pp 67–80

    Google Scholar 

  69. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Yamamoto M, Tomita E (1986) Staurosporine, a potent inhibitor of phospholipids/Ca2+-dependent protein kinase. Biochim Biophys Res Commum 135:397–402

    Article  CAS  Google Scholar 

  70. Liu Y, Bhalla K, Hill C, Priest DG (1994) Evidence for involvement of tyrosine phosphorylation in taxol-induced apoptosis in a human ovarian tumor cell line. Biocchem Pharmacol 48:1265–1272

    Article  CAS  Google Scholar 

  71. Murata T, Shinya N, Yamaguchi M (1997) Expression of calcium-binding protein regucalcin mRNA in the cloned human hepatoma cells (Hep G2): stimulation by insulin. Mol Cell Biochem 175:163–168

    Article  PubMed  CAS  Google Scholar 

  72. Misawa H, Yamaguchi M (2000) Involvement of hepatic nuclear factor I binding motif in transcriptional regulation of Ca2+-binding protein regucalcin gene. Biochem Biophys Res Commun 269:270–278

    Article  PubMed  CAS  Google Scholar 

  73. Ritzenthaler JD, Goldstein RH, Fine A, Lichtler A, Rowe DW, Smith BD (1991) Transforming-growth-factor-beta activation elements in the distal promoter regions of the rat alpha 1 type I collagen gene. Biochem J 280:157–162

    PubMed  CAS  Google Scholar 

  74. Ritzenthaler JD, Goldstein RH, Fine A, Smith BD (1993) Regulation of the alpha1(I) collagen promoter via a transforming growth factor-beta activation element. J Biol Chem 268:13625–13631

    PubMed  CAS  Google Scholar 

  75. Ogata Y, Niisato N, Furuyama S, Cheifetz S, Kim RH, Sugiya H, Sodek J (1997) Transforming growth factor-beta 1 regulation of bone sialoprotein gene transcription: identification of TGF-beta activation element in the rat BSP gene promoter. J Cell Biochem 65:501–512

    Article  PubMed  CAS  Google Scholar 

  76. Krohn K, Rozovsky I, Wals P, Teter B, Anderson CP, Finch CE (1999) Glial fibrillary acidic protein transcription responses to transforming growth factor-beta 1 and interleukin-1beta are mediated by a nuclear factor-1-like site in the nearupstream promoter. J Neurochem 72:1353–1361

    Article  PubMed  CAS  Google Scholar 

  77. Lee M, Song H, Yu S, Lee K, Park JS (1999) A 40-kDa NF1-like protein, not YY1, binds to the rat p53 promoter for transactivation in various rat organs. Biochem Cell Biol 77:209–214

    Article  PubMed  CAS  Google Scholar 

  78. Lee M, Song H, Lee K, Park JS (1999) In vitro transcription assay with the purified 40 kDa NF1-like protein binding to the rat p53 promoter. Biochem Mol Biol Int 47:427–434

    PubMed  CAS  Google Scholar 

  79. Misawa H, Yamaguchi M (2000) Intracellular signaling factors-enhanced hepatic nuclear protein binding to TTGGC sequence in the rat regucalcin gene promoter: involvement of protein phosphorylation. Biochem Biophys Res Commun 279:275–281

    Article  PubMed  CAS  Google Scholar 

  80. Hunter T (1995) Protein kinases and phosphatases: the Yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  81. Kruse U, Sippel AE (1994) Transcription factor nuclear factor I proteins from stable homo- and heterodimers. FEBS Lett 348:46–50

    Article  PubMed  CAS  Google Scholar 

  82. Kawamura H, Nagata K, Masamune Y, Nakanishi Y (1993) Phosphorylation of NF-I in vitro by cdc2 kinase. Biochem Biophys Res Commun 1892:1424–1431

    Article  Google Scholar 

  83. Reifel-Miller AE, Calnek DS, Crinnell BW (1994) Tyrosine phosphorylation regulates the DNA binding activity of a nuclear factor 1-like repressor protein. J Biol Chem 269:23861–23864

    PubMed  CAS  Google Scholar 

  84. Karin M (1994) Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol 6:415–424

    Article  PubMed  CAS  Google Scholar 

  85. Misawa H, Yamaguchi M (2000) Identification of transcription factor in the promoter region of rat regucalcin gene: binding of nuclear factor I-A1 to TTGGC motif. J Cell Biochem 84:795–802

    Article  CAS  Google Scholar 

  86. Nagata K, Guggenheimer RA, Emoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79:6438–6442

    Article  PubMed  CAS  Google Scholar 

  87. Zhang J, Zhang QY, Guo J, Zhou Y, Ding X (2000) Identification and functional characterization of a conserved, nuclear factor 1-like element in the proximal promoter region of CYP1A2 gene specifically expressed in the liver and olfactory mucosa. J Biol Chem 275:8895–8902

    Article  PubMed  CAS  Google Scholar 

  88. Furlong EE, Rein T, Martin F (1996) YY1 and NF1 both activate the human p53 promoter by alternatively binding to a composite element, and YY1 and W1A cooperate to amplify p53 promoter activity. Mol Cell Biol 16:5933–5945

    PubMed  CAS  Google Scholar 

  89. Paonessa G, Gounari F, Frank R, Cortese R (1988) Purification of a NF1-like DNA-binding protein from rat-liver and cloning of the corresponding cDNA. EMBO J 7:3115–3123

    PubMed  CAS  Google Scholar 

  90. Bisgrove DA, Monckton EA, Packer M, Godbout R (2000) Regulation of brain fatty acid-binding protein expression by differential phosphorylation of nuclear factor I in malignant glioma cell lines. J Biol Chem 275:30668–30676

    Article  PubMed  CAS  Google Scholar 

  91. Bedford FK, Julius D, Ingraham HA (1988) Neuronal expression of the 5HT3 serotonin receptor gene requires nuclear factor 1 complexes. J Neurosci 18:6186–6194

    Google Scholar 

  92. Osada S, Daimon S, Ikeda T, Nishihara T, Yano K, Yamasaki M, Imagawa M (1997) Nuclear factor 1 family proteins bind to the silencer element in the rat glutathione transferase P gene. J Biochem 121:355–363

    PubMed  CAS  Google Scholar 

  93. Jiang J-G, Gao B, Zarnegar R (2000) The concerted regulatory functions of the transcription factors nuclear factor-1 and upstream stimulatory factor on a composite element in the promoter of the hepatocyte growth factor gene. Oncogene 19:2786–2790

    Article  PubMed  CAS  Google Scholar 

  94. Nakamura M, Okura T, Kitami Y, Hiwada K (2001) Nuclear factor 1 is a negative regulator of gadd153 gene expression in vascular smooth muscle cells. Hypertension 37:419–424

    PubMed  CAS  Google Scholar 

  95. Rupp R, Kruse U, Multhaup G, Gobel U, Beyreuther K, Sippel AE (1990) Chicken NF1/TGGCA proteins are encoded by at least three independent genes: NF1A, NF1B and NF1C with homologous in the human genome. Nucleic Acids Res 18:2607–2616

    Article  PubMed  CAS  Google Scholar 

  96. Fletcher CF, Jenkions NA, Copeland NG, Chaudhry AZ, Gronostajski RM (1999) Exon structure of the nuclear factor I DNA-binding domain from C. elegans to mammals. Mamm Genome 10:390–396

    Article  PubMed  CAS  Google Scholar 

  97. Kruse U, Sippel AE (1994) The genes for transcription factor nuclear factor-1 give rise to corresponding splice variants between vertebrate species. J Mol Biol 238:860–865

    Article  PubMed  CAS  Google Scholar 

  98. Xu M, Osada S, Imagawa M, Nishihara T (1997) Genomic organization of the rat nuclear factor I-A gene. J Biochem 122:795–801

    PubMed  CAS  Google Scholar 

  99. Sawada N, Yamaguchi M (2006) Involvement of nuclear factor I-A1 in the regulation of regucalcin gene promoter activity in cloned normal rat kidney proximal tubular epithelisl cells. Int J Mol Med 18:665–671

    PubMed  CAS  Google Scholar 

  100. Cano-Abad MF, Villarroya M, Garcia AG, Gabilan NH, Lopez MG (2001) Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death. J Biol Chem 276:39695–39704

    Article  PubMed  CAS  Google Scholar 

  101. Misawa H, Yamaguchi M (2001) Molecular cloning and sequencing of the cDNA coding for a novel regucalcin gene promoter region-related protein in rat, mouse and human liver. Int J Mol Med 8:513–520

    PubMed  CAS  Google Scholar 

  102. Misawa H, Yamaguchi M (2002) Gene expression for a novel protein RGPR-p117 in various species: the stimulation by intracellular signaling factors. J Cell Biochem 87:188–193

    Article  PubMed  CAS  Google Scholar 

  103. Sawada N, Yamaguchi M (2005) A novel regucalcin gene promoter region-related protein: comparison of nucleotide and amino acid sequences in vertebrate species. Int J Mol Med 15:97–104

    PubMed  CAS  Google Scholar 

  104. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  105. Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    Article  PubMed  CAS  Google Scholar 

  106. Busch SJ, Sassone-Corsi P (1990) Dimers, leucine zippers and DNA-binding domains. Trends Genet 6:36–40

    Article  PubMed  CAS  Google Scholar 

  107. O’Shea EK, Rutkowski R, Kim PS (1989) Evidence that the leucine zipper is a coiled coil. Science 243:538–542

    Article  PubMed  Google Scholar 

  108. Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246:911–916

    Article  PubMed  CAS  Google Scholar 

  109. O’Shea EK, Rutkowski R, Stafford WF III, Kim PS (1989) Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245:646–648

    Article  PubMed  Google Scholar 

  110. Maekawa T, Sakura H, Kanei-Ishii C, Sudo T, Yoshimura T, Fujisawa J, Yoshida M, Ishii S (1989) Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 8:2023–2028

    PubMed  CAS  Google Scholar 

  111. Collum RG, Alt FW (1990) Are myc proteins transcription factors. Cancer Cells 2:69–75

    PubMed  CAS  Google Scholar 

  112. Clerc RG, Corcoran LM, LeBowitz JH, Baltimore D, Sharp PA (1988) The B-cell-specific Oct-2 protein contains POU box- and homeo box-type domains. Genes Dev 2:1570–1581

    Article  PubMed  CAS  Google Scholar 

  113. Yamaguchi M, Misawa H, Ma ZJ (2003) Novel protein RGPR-p117: the gene expression in physiologic state and the binding activity to regucalcin gene promoter region in rat liver. J Cell Biochem 88:1092–1100

    Article  PubMed  CAS  Google Scholar 

  114. Kido Y, Nakae J, Accili D (2001) Clinical review 125: the insulin receptor and its cellular targets. J Clin Endocrinol Metab 86:972–979

    Article  PubMed  CAS  Google Scholar 

  115. Nakagawa T, Yamaguchi M (2005) Hormonal regulation on regucalcin mRNA expression in cloned normal rat kidney proximal tubular epithelial NRK52E cells. J Cell Biochem 95:589–597

    Article  PubMed  CAS  Google Scholar 

  116. Sawada N, Nakagawa T, Murata T, Yamaguchi M (2005) Nuclear localization of a novel protein, RGPR-p117, in cloned normal rat kidney proximal tubular epithelial cells. Int J Mol Med 16:809–814

    Google Scholar 

  117. Sawada N, Yamaguchi M (2005) Overexpression of RGPR-p117 enhances regucalcin gene expression in cloned normal rat kidney proximal tubular epithelial cells. Int J Mol Med 16:1049–1055

    PubMed  CAS  Google Scholar 

  118. Sawada N, Yamaguchi M (2006) Overexpression of RGPR-p117 enhances regucalcin gene promoter activity in cloned normal rat kidney proximal tubular epithelial cells: involvement of TTGGC motif. J Cell Biochem 99:589–597

    Article  PubMed  CAS  Google Scholar 

  119. Peleck SL, Charest DL, Mordret GP, Siow YL, Palaty C, Campbell D, Chaslton L, Samiei M, Sanghera JS (1993) Networking with mitogen-activated protein kinases. Mol Cell Biochem 127(128):157–169

    Article  Google Scholar 

  120. Yamaguchi M (2010) Novel protein RGPR-p117: its role as the regucalcin gene transcription factor. Mol Cell Biochem 327:53–63

    Article  CAS  Google Scholar 

  121. Yamaguchi M, Oishi K (1995) 17β-Estradiol stimulates the expression of hepatic calcium-binding protein regucalcin mRNA in rats. Mol Cell Biochem 143:137–141

    Article  PubMed  CAS  Google Scholar 

  122. Tsai M-J, O’Malley BW (1991) Mechanism of regulation of gene transcription by steroid receptors. In: Cohen P, Foulkes JG (eds) The hormonal control of gene transcription. Elsevier, Amsterdam, pp 101–128

    Google Scholar 

  123. Nejak-Bowen KN, Zeng G, Tan X, Cieply B, Monga SP (2009) β-Catenin regulates vitamin C biosynthesis and cell survival in murine liver. J Biol Chem 284:28115–28127

    Article  PubMed  CAS  Google Scholar 

  124. Yamaguchi M, Otomo Y, Uchiyama S, Nakagawa T (2008) Hormonal regulation of regucalcin mRNA expression in osteoblastic MC3T3-E1 cells. Int J Mol Med 21:771–775

    PubMed  CAS  Google Scholar 

  125. Rath B, Pandey RS, Debata PR, Maruyama N, Supakar PC (2008) Molecular characterization of senescence marker protein-30 gene promoter: identification of repressor elements and functional nuclear factor binding sites. BMC Mol Biol 9:43

    Article  PubMed  CAS  Google Scholar 

  126. Shimokawa N, Yamaguchi M (1993) Expression of hepatic calcium-binding protein regucalcin mRNA is mediated through Ca2+/calmodulin in rat liver. FEBS Lett 316:79–84

    Article  PubMed  CAS  Google Scholar 

  127. Isogai M, Yamaguchi M (1995) Calcium administration increases calcium-binding protein regucalcin concentration in the liver of rats. Mol Cell Biochem 143:53–58

    Article  PubMed  CAS  Google Scholar 

  128. Yamaguchi M, Ueoka S (1998) Expression of calcium-binding protein regucalcin mRNA in fetal rat liver is stimulated by calcium administration. Mol Cell Biochem 178:283–287

    Article  PubMed  CAS  Google Scholar 

  129. Yamaguchi M, Takei Y, Yamamoto T (1975) Effect of thyrocalcitonin in liver of intact and thyroparathyroidectomized rats. Endocrinology 96:1004–1008

    Article  PubMed  CAS  Google Scholar 

  130. Yamaguchi M (1991) Stimulatory effect of calcitonin on Ca2+ inflow in isolated rat hepatocytes. Mol Cell Endocrinol 75:65–70

    Article  PubMed  CAS  Google Scholar 

  131. Yamaguchi M, Imase M (1988) Hormonal regulation of biliary calcium excretion in rats: inhibition of calcitonin action by α1-adrenergic stimulation. Horm Metab Res 20:221–224

    Article  PubMed  CAS  Google Scholar 

  132. Yamaguchi M, Kurota H (1995) Expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats: the stimulation by calcium administration. Mol Cell Biochem 146:71–77

    Article  PubMed  CAS  Google Scholar 

  133. Murata T, Yamaguchi M (1999) Binding of kidney nuclear proteins to the 5′-flanking region of the rat gene for Ca2+-binding protein regucalcin: involvement of Ca2+/calmodulin signaling. Mol Cell Biochem 199:35–40

    Article  PubMed  CAS  Google Scholar 

  134. Misawa H, Yamaguchi M (2001) Involvement of nuclear factor-1 (NF1) binding motif in the regucalcin gene expression of rat kidney cortex: the expression is suppressed by cisplatin administration. Mol Cell Biochem 219:29–37

    Article  PubMed  CAS  Google Scholar 

  135. Yamaguchi M, Kanayama Y, Shimokawa N (1994) Expression of calcium-binding protein regucalcin mRNA in rat liver is stimulated by calcitonin: the hormonal effect is mediated through calcium. Mol Cell Biochem 136:43–48

    Article  PubMed  CAS  Google Scholar 

  136. Yamaguchi M, Oishi K, Isogai M (1995) Expression of hepatic calcium-binding protein regucalcin mRNA is elevated by refeeding of fasted rats: involvement of glucose, insulin and calcium as stimulating factor. Mol Cell Biochem 142:35–41

    Article  PubMed  CAS  Google Scholar 

  137. Kurota H, Yamaguchi M (1996) Steroid hormonal regulation of calcium-binding protein regucalcin mRNA expression in the kidney cortex of rats. Mol Cell Biochem 155:105–111

    Article  PubMed  CAS  Google Scholar 

  138. Vrtovsnik F, Jourdain M, Chergui G, Lefebvre J, Friedlander G (1994) Glucocorticoid inhibition of Na-Pi cotransport in renal epithelial cells is mediated by protein kinase C. J Biol Chem 269:8872–8877

    PubMed  CAS  Google Scholar 

  139. Yamaguchi M, Mori S (1990) Inhibitory effect of calcium-binding protein regucalcin on protein kinase C activity in rat liver cytosol. Biochem Med Metab Biol 43:140–146

    Article  PubMed  CAS  Google Scholar 

  140. Ueoka S, Yamaguchi M (1998) Sexual difference of hepatic calcium-binding protein regucalcin mRNA expression in rats with different ages: effect of ovarian hormone. Biol Pharm Bull 21:405–407

    PubMed  CAS  Google Scholar 

  141. Yamaguchi M, Kanayama Y (1995) Enhanced expression of calcium-binding protein regucalcin mRNA in regenerating rat liver. J Cell Biochem 57:185–190

    Article  PubMed  CAS  Google Scholar 

  142. Pinol MR, Berchtold MW, Bachs O, Heizmann CW (1988) Increased calmodulin synthesis in the pre-replicative phase of rat liver regeneration. FEBS Lett 231:445–450

    Article  Google Scholar 

  143. Baffy G, Yang L, Michalopoulos GK, Williamson JR (1992) Hepatocyte growth factor induces calcium mobilization and inositol phosphate production in rat hepatocyes. J Cell Physiol 153:332–339

    Article  PubMed  CAS  Google Scholar 

  144. Courtois G, Baumhueter S, Crabtree GR (1988) Purified hepatocyte nuclear factor 1 interacts with a family of hepatocyte specific promoters. Proc Natl Acad Sci USA 85:7937–7941

    Article  PubMed  CAS  Google Scholar 

  145. Van Rossum GDV, Smith KP, Morris HP (1973) The net extrusion of calcium and its temporal relation to the accumulation of potassium in slices of rat liver and of Morris hepatoma 5123tc and 3924A. Cancer Res 33:1086–1091

    PubMed  Google Scholar 

  146. Makino R, Yamaguchi M (1996) Expression of calcium-binding protein regucalcin mRNA in hepatoma cells. Mol Cell Biochem 155:85–90

    Article  PubMed  CAS  Google Scholar 

  147. Makino R, Hayahi K, Sato S, Sugimura T (1984) Expression of the c-Ha-ras and c-myc genes in rat liver tumors. Biochem Biophys Res Commun 119:1096–1102

    Article  CAS  Google Scholar 

  148. Suzuki S, Asamoto M, Tsujimura K, Shirai T (2004) Specific differences in gene expression profile revealed by cDNA microarray analysis of glutathione S-transferase placental form (GST-P) immunohistochemically positive rat liver foci and surrounding tissue. Carcinogenesis 25:439–443

    Article  PubMed  CAS  Google Scholar 

  149. Long OH, Moore L (1987) Cytosolic calcium after carbon tetrachloride, l,l-dichloroethylene, and phenylephrine exposure. studies in rat hepatocytes with phosphorylase a and quin 2. Biochem Pharmacol 36:1215–1221

    Article  PubMed  CAS  Google Scholar 

  150. Isogai M, Shimokawa N, Yamaguchi M (1994) Hepatic calcium-binding protein regucalcin is released into the serum of rats administered orally carbon tetrachloride. Mol Cell Biochem 131:174–179

    Article  Google Scholar 

  151. Wendel A, Tiegs G, Werner C (1987) Evidence for the involvement of a reperfusion injury in galactosamine/endotoxin-induced hepatitis in mice. Biochem Pharmacol 36:2637–2639

    Article  PubMed  CAS  Google Scholar 

  152. Isogai M, Oishi K, Yamaguchi M (1994) Serum release of hepatic calcium-binding protein regucalcin by liver injury with galactosamine administration in rats. Mol Cell Biochem 136:85–90

    Article  PubMed  CAS  Google Scholar 

  153. Gran TE, Guarino AM, Greene FE, Gigon PL, Gillette JR (1968) Effect of partial hepatectomy on the responsiveness of microsomal enzymes and cytochrome P-450 to phenobarbital or 3-methylcholanthrene. Biochem Pharmacol 17:1769–1778

    Article  Google Scholar 

  154. Isogai M, Oishi K, Shimokawa N, Yamaguchi M (1994) Expression of hepatic calcium-binding protein regucalcin mRNA is decreased by phenobarbital administration in rats. Mol Cell Biochem 141:15–19

    Article  PubMed  CAS  Google Scholar 

  155. Isogai M, Kurota H, Yamaguchi M (1997) Hepatic calcium-binding protein regucalcin concentration is decreased by streptozotocin-diabetic state and ethanol ingestion in rats. Mol Cell Biochem 168:67–72

    Article  PubMed  CAS  Google Scholar 

  156. Yamaguchi M, Tsurusaki Y, Misawa H, Inagaki S, Ma ZJ, Takahashi H (2002) Potential role of regucalcin as a specific biochemical marker of chronic liver injury with carbon tetrachloride administration in rats. Mol Cell Biochem 241:61–67

    Article  PubMed  CAS  Google Scholar 

  157. Yamaguchi M, Isogai M, Shimada N (1997) Potential sensitivity of hepatic specific protein regucalcin as a marker of chronic liver injury. Mol Cell Biochem 167:187–190

    Article  PubMed  CAS  Google Scholar 

  158. Lv S, Wang JH, Liu F, Gao Y, Fei R, Du SC, Wei L (2008) Senescence marker protein 30 in acute liver failure: validation of a mass spectrometry proteomics assay. BMC Gastroenterol 8:17

    Article  PubMed  CAS  Google Scholar 

  159. Elfarra AA, Jakobson I, Anders MW (1986) Mechanism of S-(1,2 dichlorovinyl)glutathione induced nephrotoxicity. Biochem Pharmacol 35:283–288

    Article  PubMed  CAS  Google Scholar 

  160. Tune BM, Fravert D, Hsu C-Y (1989) Oxidative and mitochondrial toxic effects of cephalosporin antibiotics in the kidney. A comparative study of cephaloridine and cephaloglycin. Biochem Pharmacol 38:795–802

    Article  PubMed  CAS  Google Scholar 

  161. Montine TJ, Borch RF (1990) Role of endogenous sulfur-containing nucleotides in an in vitro model of cis-diamminedichloroplatinium (II)-induced nephrotoxicity. Biochem Pharmacol 39:1751–1757

    Article  PubMed  CAS  Google Scholar 

  162. Goldstein RS, Pasino DA, Hewitt WR, Hook JB (1986) Biochemical mechanism of cephaloridine nephrotoxicity: time and concentration dependence of peroxidative injury. Toxicol Appl Pharmacol 83:261–270

    Article  PubMed  CAS  Google Scholar 

  163. Kurota H, Yamaguchi M (1995) Suppressed expression of calcium-binding protein regucalcin mRNA in the renal cortex of rats with chemically induced kidney damage. Mol Cell Biochem 151:55–60

    Article  PubMed  CAS  Google Scholar 

  164. Shinya N, Yamaguchi M (1997) Alterations in Ca2+-ATPase activity and calcium-binding protein regucalcin mRNA expression in the kidney cortex of rats with saline ingestion. Mol Cell Biochem 170:17–22

    Article  PubMed  CAS  Google Scholar 

  165. Shinya N, Kurota H, Yamaguchi M (1996) Calcium-binding protein regucalcin mRNA expression in the kidney cortex is suppressed by saline ingestion in rats. Mol Cell Biochem 162:139–144

    Article  PubMed  CAS  Google Scholar 

  166. Shinya N, Yamaguchi M (1998) Stimulatory effect of calcium administration on regucalcin mRNA expression is attenuated in the kidney cortex of rats with saline ingestion. Mol Cell Biochem 178:275–281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Regucalcin studies of the author were supported by a Grant-in-Aid for Scientific Research (C) No. 63571053, No. 02671006, No. 04671362, No. 06672193, No. 08672522, No. 10672048, No. 13672292, and No. 17590063 from the Ministry of Education, Science, Sports, and Culture, Japan. Also, the author was awarded the Bounty of Encouragement Foundation in Pharmaceutical Research, 1994, Japan and the Bounty of the Yamanouchi Foundation for Research on Metabolic Disorders, 2004, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M. The transcriptional regulation of regucalcin gene expression. Mol Cell Biochem 346, 147–171 (2011). https://doi.org/10.1007/s11010-010-0601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0601-8

Keywords

Navigation