Skip to main content
Log in

Functional genomics of tumor suppressor miR-196b in T-cell acute lymphoblastic leukemia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Huge data accumulated in last few years have shown that differential expression of candidate miRNAs in normal versus transformed cell provides important insights into the pathogenesis of cancer including leukemias. In our previous report, we have revealed that miR-196b was significantly down-regulated in both EB-3 cells as well as B-cell ALL (acute lymphoblastic leukemia) patients as compared to their respective controls. We have unambiguously proven that miR-196b restoration in EB-3 cells leads to significant down-regulation of c-myc and its effector genes, i.e., human telomerase reverse transcriptase (hTERT), B-cell lymphoma/leukemia-2 (Bcl-2), apoptosis antagonizing transcription factor (AATF), and qualifies for tumor suppressor function in B-cell ALL. Keeping in view these results, the present study was aimed at dissecting the role of miR-196b and other miRNAs present near/within the genomic regions involved in genetic translocations characteristic of ALL in T-cell ALL cell lines and patient samples. We have demonstrated significant down-regulation in the expression of miR-196b in MOLT-4 and T-cell ALL patients with respect to the respective control cells. Transfection experiments revealed that none of the six identified miRNAs were able to knock down the expression of c-myc gene. Interestingly, it was found that miR-196b loses its ability to down-regulate c-myc gene expression in T-cell ALL as a consequence of mutations in target 3′-untranslated region (3′-UTR) of the c-myc gene. Results of the present study revealed that miR-196b becomes non-functional in T-cell ALL as a consequence of mutations in 3′-UTR of c-myc gene in T-cell ALL cellular models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350:1535–1548

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH, Jeha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6:149–165

    Article  CAS  PubMed  Google Scholar 

  3. Copelan EA, McGuire EA (1995) The biology and treatment of acute lymphoblastic leukemia in adults. Blood 85:1151–1168

    CAS  PubMed  Google Scholar 

  4. Baak U, Gokbuget N, Orawa H, Schwartz S, Hoelzer D, Thie E, Burmeister T (2008) Thymic adult T-cell acute lymphoblastic leukemia stratified in standard- and high-risk group by aberrant HOX11L2 expression. Leukemia 22:1154–1160

    Article  CAS  PubMed  Google Scholar 

  5. Faderl S, Kantarjian HM, Talpaz H, Estrov Z (1998) Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 91:3995–4019

    CAS  PubMed  Google Scholar 

  6. Armstrong SA, Look AT (2005) Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23:6306–6315

    Article  CAS  PubMed  Google Scholar 

  7. Harrison CJ (2008) Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 144:147–156

    Article  PubMed  Google Scholar 

  8. Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440

    Article  CAS  PubMed  Google Scholar 

  9. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  10. Rubnitz JE, Pui CH (1997) Childhood acute lymphoblastic leukemia. Oncologist 2:374–380

    PubMed  Google Scholar 

  11. Pui CH, Evans WE (1998) Acute lymphoblastic leukemia. N Engl J Med 339:605–615

    Article  CAS  PubMed  Google Scholar 

  12. Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, Agirre X, Barrios M, Navarro G, Molina FJ, Calasanz MJ, Prosper F, Heiniger A, Torres A (2004) Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104:2492–2498

    Article  CAS  PubMed  Google Scholar 

  13. Bishop JM (1991) Molecular themes in oncogenesis. Cell 64:235–248

    Article  CAS  PubMed  Google Scholar 

  14. Hunter T (1991) Cooperation between oncogenes. Cell 64:249–270

    Article  CAS  PubMed  Google Scholar 

  15. Weinberg RA (1991) Tumor suppressor genes. Science 254:1138–1146

    Article  CAS  PubMed  Google Scholar 

  16. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  17. Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  18. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  19. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  20. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831

    Article  CAS  PubMed  Google Scholar 

  21. Baehrecke EH (2003) miRNAs: micro managers of programmed cell death. Curr Biol 13:R473–R475

    Article  CAS  PubMed  Google Scholar 

  22. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    Article  CAS  PubMed  Google Scholar 

  23. Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6:2127–2132

    Article  CAS  PubMed  Google Scholar 

  24. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  25. McManus MT (2003) MicroRNAs and cancer. Semin Cancer Biol 13:253–258

    Article  CAS  PubMed  Google Scholar 

  26. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  Google Scholar 

  27. Calin GA, Croce CM (2006) MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 25:6202–6210

    Article  CAS  PubMed  Google Scholar 

  28. Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974

    Article  CAS  PubMed  Google Scholar 

  29. Gartel AL, Kandel EU (2008) miRNAs: little known mediators of oncogenesis. Semin Cancer Biol 18:103–110

    Article  CAS  PubMed  Google Scholar 

  30. Kluiver J, Kroesen BJ, Poppemal S, van den Berg A (2006) The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 20:1931–1936

    Article  CAS  PubMed  Google Scholar 

  31. Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Gracia-Manero G, Calin GA (2008) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22:1095–1105

    Article  CAS  PubMed  Google Scholar 

  32. Calin GA, Croce CM (2007) Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 117:2059–2066

    Article  CAS  PubMed  Google Scholar 

  33. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  CAS  PubMed  Google Scholar 

  34. He H, Jazdzewski K, Li W et al (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080

    Article  CAS  PubMed  Google Scholar 

  35. Bhatia S, Kaul D, Varma N (2010) Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia (ALL). Mol Cell Biochem. doi:10.1007/s11010-010-0406-9

  36. Boyum A (1968) Ficoll-Hypaque method for separating mononuclear cells and granulaocytes from human blood. Scand J Clin Lab Invest 77(suppl):57–62

    Google Scholar 

  37. Kaul D, Khanna A, Suman (2006) Evidence and nature of a novel miRNA encoded by HIV-1. Proc Indian Natl Sci Acad 72:91–95

    CAS  Google Scholar 

  38. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidium thiocynate phenol chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  39. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:88–96

    Article  Google Scholar 

  40. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  CAS  PubMed  Google Scholar 

  41. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik E, Aqeilan RI, Zupo S, Dono M, Rassent L, Alder H, Volinia S, Liu C, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:3944–13949

    Article  Google Scholar 

  42. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  CAS  PubMed  Google Scholar 

  43. Landais S, Landry S, Legault P, Rassart E (2007) Oncogenic potential of the miR-106–363 cluster and its implication in human T-cell leukemia. Cancer Res 67:5699–5707

    Article  CAS  PubMed  Google Scholar 

  44. Wiemer EAC (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43:1529–1544

    Article  CAS  PubMed  Google Scholar 

  45. Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Falcão RP, Zago MA, Silva WA Jr (2007) miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40:1435–1440

    CAS  PubMed  Google Scholar 

  46. Marton S, Garcia MR, Robello C, Persson H, Trajtenberg F, Pritsch O, Rovira C, Naya H, Dighiero G, Cayota A (2008) Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22:330–338

    Article  CAS  PubMed  Google Scholar 

  47. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  48. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B-cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632

    Article  CAS  PubMed  Google Scholar 

  49. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Veccihone A, Negrini M, Harrz C, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  CAS  PubMed  Google Scholar 

  50. Calin GA, Croce CM (2006) Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 33:167–173

    Article  CAS  PubMed  Google Scholar 

  51. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM (2006) TCL1 expression in CLL is regulated by miR-29 and miR-181. Cancer Res 66:1590–11593

    Article  Google Scholar 

  52. Schotte D, Chau K, Sylvester G, Liu G, Chen C, van der Velden VJH, Broekhuis MJC, Peters TCJM, Pieters R, den Boer ML (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23:313–322

    Article  CAS  PubMed  Google Scholar 

  53. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc Protein. Genes Dev 17:1115–1129

    Article  CAS  PubMed  Google Scholar 

  54. Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425

    Article  CAS  PubMed  Google Scholar 

  55. Kitada S, Pedersen IM, Schimmer AD, Reed JC (2002) Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 21:3459–3474

    Article  CAS  PubMed  Google Scholar 

  56. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 278:349–352

    Article  Google Scholar 

  57. Horikawa I, Cable PL, Afshari C, Barrett JC (1999) Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 59:826–830

    CAS  PubMed  Google Scholar 

  58. Kaul D, Ahlawat A, Gupta SD (2009) HIV-1 genome-encoded hiv1-mir-H1 impairs cellular responses to infection. Mol Cell Biochem 323:143–148

    Article  CAS  PubMed  Google Scholar 

  59. Sampson VB, Rong NH, Han J (2007) MicroRNA Let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770

    Article  CAS  PubMed  Google Scholar 

  60. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  61. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  CAS  PubMed  Google Scholar 

  62. Silanes IL, Quesada MP, Esteller M (2007) Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cell Oncol 29:1–17

    Google Scholar 

  63. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105:7269–7274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Department of Biotechnology (D.B.T., Govt. of India, New Delhi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kaul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 689 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, S., Kaul, D. & Varma, N. Functional genomics of tumor suppressor miR-196b in T-cell acute lymphoblastic leukemia. Mol Cell Biochem 346, 103–116 (2011). https://doi.org/10.1007/s11010-010-0597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0597-0

Keywords

Navigation