Skip to main content
Log in

Reciprocal regulation of 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor expression by dexamethasone inhibits human coronary artery smooth muscle cell proliferation in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The actions of glucocorticoids are mediated, in part, by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which amplifies their effects at the pre-receptor level by converting cortisone to cortisol. Glucocorticoids, such as dexamethasone, inhibit vascular smooth muscle cell proliferation; however, the role of 11β-HSD1 in this response remains unknown. Accordingly, we treated human coronary artery smooth muscle cells (HCSMC) with dexamethasone (10−9–10−6 mol/l) and found that after 72 h dexamethasone increased 11β-HSD1 expression (14.16 ± 1.6-fold, P < 0.001) and activity (6.21 ± 1.2-fold, P < 0.001) in a dose- and time-dependent manner, which was dependent upon glucocorticoid receptor (GR) activation and C/EBPβ and C/EBPδ signaling. As glucocorticoids are known to negatively regulate GR expression, we examined the effect of decreasing 11β-HSD1 expression on GR expression. In HCSMC transfected with 11β-HSD1 siRNA, GR expression was increased; this effect was associated with protein kinase A activation and CREB phosphorylation. To examine the role of 11β-HSD1 in HCSMC proliferation, we decreased 11β-HSD1 expression and stimulated cells with platelet-derived growth factor (PDGF) (10 ng/ml). Decreased 11β-HSD1 expression was associated with increased cell proliferation in the absence of PDGF compared to scrambled control-transfected cells (236.10 ± 13.11%, n = 4, P < 0.001) and this effect was augmented by PDGF. Furthermore, the inhibitory effect of dexamethasone on cellular proliferation was abrogated in 11β-HSD1 siRNA-transfected HCSMC. Downregulation of 11β-HSD1 was associated with decreased p27kip1 expression and increased phosphorylated retinoblastoma protein, consistent with a proliferative response. These findings suggest that 11β-HSD1 plays a role in the effects of glucocorticoids on vascular smooth muscle cell phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839. doi:10.1016/0092-8674(95)90199-X

    Article  CAS  PubMed  Google Scholar 

  2. Berk BC, Vallega G, Griendling KK, Gordon JB, Cragoe EJ Jr, Canessa M, Alexander RW (1988) Effects of glucocorticoids on Na+/H+ exchange and growth in cultured vascular smooth muscle cells. J Cell Physiol 137:391–401. doi:10.1002/jcp.1041370302

    Article  CAS  PubMed  Google Scholar 

  3. Longenecker JP, Kilty LA, Johnson LK (1982) Glucocorticoid influence on growth of vascular wall cells in culture. J Cell Physiol 113:197–202. doi:10.1002/jcp.1041130203

    Article  CAS  PubMed  Google Scholar 

  4. Longenecker JP, Kilty LA, Johnson LK (1984) Glucocorticoid inhibition of vascular smooth muscle cell proliferation: influence of homologous extracellular matrix and serum mitogens. J Cell Biol 98:534–540

    Article  CAS  PubMed  Google Scholar 

  5. Cavallero C, Di Tondo U, Mingazzini PL, Nicosia R, Pericoli MN, Sarti P, Spagnoli LG, Villaschi S (1976) Cell proliferation in the atherosclerotic plaques of cholesterol-fed rabbits. Part 3. Histological and radioautographic observations on glucocorticoids-treated rabbits. Atherosclerosis 25:145–152. doi:10.1016/0021-9150(76)90020-4

    Article  CAS  PubMed  Google Scholar 

  6. Versaci F, Gaspardone A, Tomai F, Ribichini F, Russo P, Proietti I, Ghini AS, Ferrero V, Chiariello L, Gioffre PA, Romeo F, Crea F (2006) Immunosuppressive therapy for the prevention of restenosis after coronary artery stent implantation (IMPRESS Study). J Am Coll Cardiol 40:1935–1942. doi:10.1016/S0735-1097(02)02562-7

    Article  Google Scholar 

  7. Villa AE, Guzman LA, Chen W, Golomb G, Levy RJ, Topol EJ (1994) Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty. J Clin Invest 93:1243–1249. doi:10.1172/JCI117078

    Article  CAS  PubMed  Google Scholar 

  8. Pires NM, Schepers A, van der Hoeven BL, de Vries MR, Boesten LS, Jukema JW, Quax PH (2005) Histopathologic alterations following local delivery of dexamethasone to inhibit restenosis in murine arteries. Cardiovasc Res 68:415–424. doi:10.1016/j.cardiores.2005.06.015

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez I, Goya L, Vallerga AK, Firestone GL (1993) Glucocorticoids reversibly arrest rat hepatoma cell growth by inducing an early G1 block in cell cycle progression. Cell Growth Differ 4:215–225

    CAS  PubMed  Google Scholar 

  10. Rogatsky I, Trowbridge JM, Garabedian MJ (1997) Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol Cell Biol 17:3181–3193

    CAS  PubMed  Google Scholar 

  11. Stewart PM, Krozowski ZS (1999) 11 beta-Hydroxysteroid dehydrogenase. Vitam Horm 57:249–324. doi:10.1016/S0083-6729(08)60646-9

    Article  CAS  PubMed  Google Scholar 

  12. Hadoke PW, Iqbal J, Walker BR (2009) Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease. Br J Pharmacol 156:689–712. doi:10.1111/j.1476-5381.2008.00047.x

    Article  CAS  PubMed  Google Scholar 

  13. Bujalska IJ, Kumar S, Stewart PM (1997) Does central obesity reflect “Cushing’s disease of the omentum”? Lancet 349:1210–1213. doi:10.1016/S0140-6736(96)11222-8

    Article  CAS  PubMed  Google Scholar 

  14. Seckl JR, Walker BR (2001) Minireview: 11beta-hydroxysteroid dehydrogenase type 1-a tissue-specific amplifier of glucocorticoid action. Endocrinology 142:1371–1376. doi:10.1210/en.142.4.1371

    Article  CAS  PubMed  Google Scholar 

  15. Hammami MM, Siiteri PK (1991) Regulation of 11 beta-hydroxysteroid dehydrogenase activity in human skin fibroblasts: enzymatic modulation of glucocorticoid action. J Clin Endocrinol Metab 73:326–334. doi:10.1210/jcem-73-2-326

    Article  CAS  PubMed  Google Scholar 

  16. Jamieson PM, Chapman KE, Edwards CR, Seckl JR (1995) 11 beta-hydroxysteroid dehydrogenase is an exclusive 11 beta-reductase in primary cultures of rat hepatocytes: effect of physicochemical and hormonal manipulations. Endocrinology 136:4754–4761. doi:10.1210/en.136.11.4754

    Article  CAS  PubMed  Google Scholar 

  17. Whorwood CB, Donovan SJ, Wood PJ, Phillips DI (2001) Regulation of glucocorticoid receptor alpha and beta isoforms and type I 11beta-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab 86:2296–2308. doi:10.1210/jc.86.5.2296

    Article  CAS  PubMed  Google Scholar 

  18. Cooper MS, Rabbitt EH, Goddard PE, Bartlett WA, Hewison M, Stewart PM (2002) Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J Bone Miner Res 17:979–986. doi:10.1359/jbmr.2002.17.6.979

    Article  CAS  PubMed  Google Scholar 

  19. Bujalska IJ, Kumar S, Hewison M, Stewart PM (1999) Differentiation of adipose stromal cells: the roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology 140:3188–3196. doi:10.1210/en.140.7.3188

    Article  CAS  PubMed  Google Scholar 

  20. Williams LJ, Lyons V, MacLeod I, Rajan V, Darlington GJ, Poli V, Seckl JR, Chapman KE (2000) C/EBP regulates hepatic transcription of 11beta-hydroxysteroid dehydrogenase type 1. A novel mechanism for cross-talk between the C/EBP and glucocorticoid signaling pathways. J Biol Chem 275:30232–30239. doi:10.1074/jbc.M001286200

    Article  CAS  PubMed  Google Scholar 

  21. Gout J, Tirard J, Thevenon C, Riou JP, Begeot M, Naville D (2006) CCAAT/enhancer-binding proteins (C/EBPs) regulate the basal and cAMP-induced transcription of the human 11beta-hydroxysteroid dehydrogenase encoding gene in adipose cells. Biochimie 88:1115–1124. doi:10.1016/j.biochi.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  22. Bruley C, Lyons V, Worsley AG, Wilde MD, Darlington GD, Morton NM, Seckl JR, Chapman KE (2006) A novel promoter for the 11beta-hydroxysteroid dehydrogenase type 1 gene is active in lung and is C/EBPalpha independent. Endocrinology 147:2879–2885. doi:10.1210/en.2005-1621

    Article  CAS  PubMed  Google Scholar 

  23. Sai S, Esteves CL, Kelly V, Michailidou Z, Anderson K, Coll AP, Nakagawa Y, Ohzeki T, Seckl JR, Chapman KE (2008) Glucocorticoid regulation of the promoter of 11beta-hydroxysteroid dehydrogenase type 1 is indirect and requires CCAAT/enhancer-binding protein-beta. Mol Endocrinol 22:2049–2060. doi:10.1210/me.2007-0489

    Article  CAS  PubMed  Google Scholar 

  24. Hadoke PW, Macdonald L, Logie JJ, Small GR, Dover AR, Walker BR (2006) Intra-vascular glucocorticoid metabolism as a modulator of vascular structure and function. Cell Mol Life Sci 63:565–578. doi:10.1007/s00018-005-5427-2

    Article  CAS  PubMed  Google Scholar 

  25. Christy C, Hadoke PW, Paterson JM, Mullins JJ, Seckl JR, Walker BR (2003) 11beta-hydroxysteroid dehydrogenase type 2 in mouse aorta: localization and influence on response to glucocorticoids. Hypertension 42:580–587. doi:10.1161/01.HYP.0000088855.06598.5B

    Article  CAS  PubMed  Google Scholar 

  26. Walker BR, Yau JL, Brett LP, Seckl JR, Monder C, Williams BC, Edwards CR (1991) 11 beta-hydroxysteroid dehydrogenase in vascular smooth muscle and heart: implications for cardiovascular responses to glucocorticoids. Endocrinology 129:3305–3312. doi:10.1210/endo-129-6-3305

    Article  CAS  PubMed  Google Scholar 

  27. Small GR, Hadoke PW, Sharif I, Dover AR, Armour D, Kenyon CJ, Gray GA, Walker BR (2005) Preventing local regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 enhances angiogenesis. Proc Natl Acad Sci USA 102:12165–12170. doi:10.1073/pnas.0500641102

    Article  CAS  PubMed  Google Scholar 

  28. Hermanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, Koo GC, Le Grand CB, Li Z, Metzger JM, Mundt SS, Noonan H, Nunes CN, Olson SH, Pikounis B, Ren N, Robertson N, Schaeffer JM, Shah K, Springer MS, Strack AM, Strowski M, Wu K, Wu T, Xiao J, Zhang BB, Wright SD, Thieringer R (2005) 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 202:517–527. doi:10.1084/jem.2005011

    Article  CAS  PubMed  Google Scholar 

  29. Bujalska IJ, Draper N, Michailidou Z, Tomlinson JW, White PC, Chapman KE, Walker EA, Stewart PM (2005) Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11 beta-hydroxysteroid dehydrogenase type 1. J Mol Endocrinol 34:675–684. doi:10.1677/jme.1.01718

    Article  CAS  PubMed  Google Scholar 

  30. Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, Pitt B, Loscalzo J (2007) Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med 13:189–197. doi:10.1038/nm1545

    Article  CAS  PubMed  Google Scholar 

  31. Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J (2003) Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 278:32100–32106. doi:10.1074/jbc.M301293200

    Article  CAS  PubMed  Google Scholar 

  32. Takeda Y, Miyamori I, Yoneda T, Ito Y, Takeda R (1994) Expression of 11 beta-hydroxysteroid dehydrogenase mRNA in rat vascular smooth muscle cells. Life Sci 54:281–285. doi:10.1016/0024-3205(94)00818-3

    Article  CAS  PubMed  Google Scholar 

  33. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM (2004) 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25:831–866. doi:10.1210/er.2003-0031

    Article  CAS  PubMed  Google Scholar 

  34. Yamada K, Duong DT, Scott DK, Wang JC, Granner DK (1999) CCAAT/enhancer-binding protein beta is an accessory factor for the glucocorticoid response from the cAMP response element in the rat phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 274:5880–5887. doi:10.1074/jbc.274.9.5880

    Article  CAS  PubMed  Google Scholar 

  35. Grange T, Roux J, Rigaud G, Pictet R (1991) Cell-type specific activity of two glucocorticoid responsive units of rat tyrosine aminotransferase gene is associated with multiple binding sites for C/EBP and a novel liver-specific nuclear factor. Nucleic Acids Res 19:131–139. doi:10.1093/nar/19.1.131

    Article  CAS  PubMed  Google Scholar 

  36. Alam T, An MR, Mifflin RC, Hsieh CC, Ge X, Papaconstantinou J (1993) trans-activation of the alpha 1-acid glycoprotein gene acute phase responsive element by multiple isoforms of C/EBP and glucocorticoid receptor. J Biol Chem 268:15681–15688

    CAS  PubMed  Google Scholar 

  37. Kalinyak JE, Dorin RI, Hoffman AR, Perlman AJ (1987) Tissue-specific regulation of glucocorticoid receptor mRNA by dexamethasone. J Biol Chem 262:10441–10444

    CAS  PubMed  Google Scholar 

  38. Freeman AI, Munn HL, Lyons V, Dammermann A, Seckl JR, Chapman KE (2004) Glucocorticoid down-regulation of rat glucocorticoid receptor does not involve differential promoter regulation. J Endocrinol 183:365–374. doi:10.1677/joe.1.05773

    Article  CAS  PubMed  Google Scholar 

  39. Govindan MV (2010) Recruitment of cAMP-response element-binding protein and histone deacetylase has opposite effects on glucocorticoid receptor gene transcription. J Biol Chem 285:4489–4510. doi:10.1074/jbc.M109.072728

    Article  CAS  PubMed  Google Scholar 

  40. Doucas V, Shi Y, Miyamoto S, West A, Verma I, Evans RM (2000) Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 97:11893–11898. doi:10.1073/pnas.220413297

    Article  CAS  PubMed  Google Scholar 

  41. Reil TD, Kashyap VS, Sarkar R, Freishlag J, Gelabert HA (2000) Dexamethasone inhibits the phosphorylation of retinoblastoma protein in the suppression of human vascular smooth muscle cell proliferation. J Surg Res 92:108–113. doi:10.1006/jsre.2000.5942

    Article  CAS  PubMed  Google Scholar 

  42. Reil TD, Sarkar R, Kashyap VS, Sarkar M, Gelabert HA (1999) Dexamethasone suppresses vascular smooth muscle cell proliferation. J Surg Res 85:109–114. doi:10.1006/jsre.1999.5665

    Article  CAS  PubMed  Google Scholar 

  43. Rabbitt EH, Lavery GG, Walker EA, Cooper MS, Stewart PM, Hewison M (2002) Prereceptor regulation of glucocorticoid action by 11beta-hydroxysteroid dehydrogenase: a novel determinant of cell proliferation. FASEB J 16:36–44

    Article  CAS  PubMed  Google Scholar 

  44. Kato JY, Matsuoka M, Polyak K, Massague J, Sherr CJ (1994) Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79:487–496. doi:10.1016/0092-8674(94)90257-7

    Article  CAS  PubMed  Google Scholar 

  45. Molnar GA, Lindschau C, Dubrovska G, Mertens PR, Kirsch T, Quinkler M, Gollasch M, Wresche S, Luft FC, Muller DN, Fiebeler A (2008) Glucocorticoid-related signaling effects in vascular smooth muscle cells. Hypertension 51:1372–1378. doi:10.1161/HYPERTENSIONAHA.107.105718

    Article  CAS  PubMed  Google Scholar 

  46. Barf T, Vallgarda J, Emond R, Haggstrom C, Kurz G, Nygren A, Larwood V, Mosialou E, Axelsson K, Olsson R, Engblom L, Edling N, Ronquist-Nii Y, Ohman B, Alberts P, Abrahmsen L (2002) Arylsulfonamidothiazoles as a new class of potential antidiabetic drugs Discovery of potent and selective inhibitors of the 11beta-hydroxysteroid dehydrogenase type 1. J Med Chem 45:3813–3815. doi:10.1021/jm025530f

    Article  CAS  PubMed  Google Scholar 

  47. Alberts P, Engblom L, Edling N, Forsgren M, Klingstrom G, Larsson C, Ronquist-Nii Y, Ohman B, Abrahmsen L (2002) Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 45:1528–1532. doi:10.1007/s00125-002-0959-6

    Article  CAS  PubMed  Google Scholar 

  48. Alberts P, Nilsson C, Selen G, Engblom LO, Edling NH, Norling S, Klingstrom G, Larsson C, Forsgren M, Ashkzari M, Nilsson CE, Fiedler M, Bergqvist E, Ohman B, Bjorkstrand E, Abrahmsen LB (2003) Selective inhibition of 11 beta-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology 144:4755–4762. doi:10.1210/en.2003-0344

    Article  CAS  PubMed  Google Scholar 

  49. Alberts P, Ronquist-Nii Y, Larsson C, Klingstrom G, Engblom L, Edling N, Lidell V, Berg I, Edlund PO, Ashkzari M, Sahaf N, Norling S, Berggren V, Bergdahl K, Forsgren M, Abrahmsen L (2005) Effect of high-fat diet on KKAy and ob/ob mouse liver and adipose tissue corticosterone and 11-dehydrocorticosterone concentrations. Horm Metab Res 37:402–407. doi:10.1055/s-2005-870228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Vassilis I. Zannis for thoughtful discussions of the data and Ms. Stephanie Tribuna for expert secretarial assistance. This work was supported by NIH grants HL61795, HL81587, HL70819, HL89734 (JL) HL81110, and HL700819 (JAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane A. Leopold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2010_592_MOESM1_ESM.ppt

Supplementary Fig. 1 Dexamethasone has no effect on 11β-HSD2, mineralocorticoid receptor, or hexose-6-phosphate dehydrogenase expression. Human coronary artery smooth muscle cells (HCSMC) were treated with increasing concentrations of dexamethasone for 72 h and a 11β-HSD2 protein expression was determined by Western blotting (n = 3). b HCSMC were treated with dexamethasone (10−7 mol/l) for up to 72 h and hexose-6-phosphate dehydrogenase (H6PD) expression was determined by Western blotting (n = 3). c HCSMC or Caki-2 cells were treated with dexamethasone (10−7 mol/l) for up to 24 h and mineralocorticoid receptor (MR) expression was examined by Western blotting (n = 3).Representative blots are shown (PPT 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michas, G., Liberman, M., Becker, K.C. et al. Reciprocal regulation of 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor expression by dexamethasone inhibits human coronary artery smooth muscle cell proliferation in vitro. Mol Cell Biochem 346, 69–79 (2011). https://doi.org/10.1007/s11010-010-0592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0592-5

Keywords

Navigation