Skip to main content

Advertisement

Log in

Recombinant hexahistidine arginine decarboxylase (hisADC) induced endogenous agmatine synthesis during stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The arginine decarboxylase (ADC) is a significant functional enzyme, synthesizes agmatine through arginine metabolism, and agmatine was reported to posses protective properties in various tissues. This study first optimized the conditions for efficient hexahistidine tagged human ADC (hisADC) gene delivery into mouse fibroblast cell line (NIH3T3) using retroviral vector (pLXSN). Later, the functionality of the delivered hisADC gene in synthesizing agmatine during H2O2 injury in NIH3T3 was also elucidated. Amplification of hisADC gene was performed using hisADC specific primers under specified conditions. The hisADC PCR product (1.4 kb) was ligated with pLXSN considering the restriction enzyme sites. The complete hisADC pLXSN clone was transfected into PT67 cell line following CalPhos Mammalian transfection method. RT-PCR and western blot results showed the specific and strong detection of hisADC genes in hisADC PT67 transfected cells compared with normal control and pLXSN transfected PT67 cells. The retrovirus containing hisADC gene (vhisADC) was infected into NIH3T3 (vhisADC NIH) using polybrene reagent. Immunocytochemical results showed hisADC expression in the cytoplasm of vhisADC NIH. HPLC analysis revealed high agmatine concentration in the vhisADC NIH, and the induced agmatine synthesized from the retroviral gene delivery prevented vhisADC NIH from H2O2 injury which is evident by the decrease in lactate dehydrogenase (P < 0.05) leakage into the medium and less number of propidium iodide positive cells during injury compared to control group. The obtained results provide compelling evidence that higher level of hisADC transgene expression completely triggered the endogenous agmatine synthesis during H2O2 injury thus protecting NIH3T3 cells against cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li G, Regunathan S, Barrow CJ et al (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969

    Article  CAS  PubMed  Google Scholar 

  2. Lortie MJ, Novotny WF, Peterson OW et al (1996) Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat. J Clin Invest 97:413–420

    Article  CAS  PubMed  Google Scholar 

  3. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  4. Regunathan S, Piletz JE (2003) Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 1009:20–29

    Article  CAS  PubMed  Google Scholar 

  5. Piletz JE, May PJ, Wang G et al (2003) Agmatine crosses the blood-brain barrier. Ann N Y Acad Sci 1009:64–74

    Article  CAS  PubMed  Google Scholar 

  6. Kim JH, Yenari MA, Giffard RG et al (2004) Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol 189:122–130

    Article  CAS  PubMed  Google Scholar 

  7. Satriano J, Schwartz D, Ishizuka S et al (2001) Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis. J Cell Physiol 188:313–320

    Article  CAS  PubMed  Google Scholar 

  8. Iizuka Y, Hong S, Kim CY et al (2008) Agmatine pretreatment protects retinal ganglion cells (RGC-5 cell line) from oxidative stress in vitro. Biocell 32:245–250

    PubMed  Google Scholar 

  9. Feng Y, Piletz JE, Leblanc MH (2002) Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 52:606–611

    CAS  PubMed  Google Scholar 

  10. Gilad GM, Gilad VH (2000) Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Lett 296:97–100

    Article  CAS  PubMed  Google Scholar 

  11. Gilad GM, Salame K, Rabey JM et al (1996) Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci 58:PL 41–PL 46

    CAS  Google Scholar 

  12. Yang XC, Reis DJ (1999) Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 288:544–549

    CAS  PubMed  Google Scholar 

  13. Yu CG, Marcillo AE, Fairbanks CA et al (2000) Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. Neuroreport 11:3203–3207

    Article  CAS  PubMed  Google Scholar 

  14. Olmos G, DeGregorio-Rocasolano N, Regalado MP et al (1999) Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 127:1317–1326

    Article  CAS  PubMed  Google Scholar 

  15. Lu J, Goula D, Sousa N et al (2003) Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neurosci 121:123–131

    Article  CAS  Google Scholar 

  16. Arndt MA, Battaglia V, Parisi E et al (2009) The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am J Physiol Cell Physiol 296:C1411–C1419

    Article  CAS  PubMed  Google Scholar 

  17. Kribben B, Heller J, Trebicka J et al (2004) Agmatine (decarboxylated arginine), a modulator of liver cell homeostasis and proliferation. Naunyn Schmiedebergs Arch Pharmacol 369:160–165

    Article  CAS  PubMed  Google Scholar 

  18. Ishizuka S, Cunard R, Poucell-Hatton S et al (2000) Agmatine inhibits cell proliferation and improves renal function in anti-thy-1 glomerulonephritis. J Am Soc Nephrol 11:2256–2264

    CAS  PubMed  Google Scholar 

  19. Sugiura T, Kobuchi S, Tsutsui H et al (2009) Preventive mechanisms of agmatine against ischemic acute kidney injury in rats. Eur J Pharmacol 603:108–113

    Article  CAS  PubMed  Google Scholar 

  20. Blo M, Micklem DR, Lorens JB (2007) Drug target discovery using retroviruses. Expert Opin Drug Discov 2:1285–1300

    Article  Google Scholar 

  21. Lorens JB, Sousa C, Bennett MK et al (2001) The use of retroviruses as pharmaceutical tools for target discovery and validation in the field of functional genomics. Curr Opin Biotechnol 12:613–621

    Article  CAS  PubMed  Google Scholar 

  22. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  23. Lee WT, Hong S, Yoon SH et al (2009) Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res 1281:64–70

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  25. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159

    Article  CAS  PubMed  Google Scholar 

  26. Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6:2895–2902

    CAS  PubMed  Google Scholar 

  27. John MC (1992) Structure and classification of retroviruses. The Retroviridae 1:20–30

    Google Scholar 

  28. Li YF, Chen HX, Liu Y et al (2006) Agmatine increases proliferation of cultured hippocampal progenitor cells and hippocampal neurogenesis in chronically stressed mice. Acta Pharmacol Sin 27:1395–1400

    Article  CAS  PubMed  Google Scholar 

  29. Zhu M, Wang W, Cai Z et al (2008) Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain. Eur J Neurosci 27:1320–1332

    Article  PubMed  Google Scholar 

  30. Morris SM (2003) Vertebrate agmatinases: what role do they play in agmatine catabolism? Ann N Y Acad Sci 1009:30–33

    Article  CAS  PubMed  Google Scholar 

  31. Cai S, Ma Q, Yu X et al (2002) Expression of human VEGF(121) cDNA in mouse bone marrow stromal cells. Chin Med J (Engl) 115:914–918

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2009-0052626), by a grant (#HMP-A080959-0902-0000100) of the 2008 Good Health R&D Project, Ministry of Health & Welfare, Korea. Special thanks to Dr. Regunathan for providing the ADC antibody to our research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Eun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, SU., Kwon, KH., Kim, JH. et al. Recombinant hexahistidine arginine decarboxylase (hisADC) induced endogenous agmatine synthesis during stress. Mol Cell Biochem 345, 53–60 (2010). https://doi.org/10.1007/s11010-010-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0559-6

Keywords

Navigation