Molecular and Cellular Biochemistry

, Volume 344, Issue 1–2, pp 261–266 | Cite as

MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells

  • Wei Xia
  • Jie Li
  • Liucun Chen
  • Baochun Huang
  • Shaohua Li
  • Guang Yang
  • Hongmei Ding
  • Fang Wang
  • Nongle Liu
  • Qiang Zhao
  • Tao Fang
  • Tao Song
  • Tianyou Wang
  • Ningsheng Shao
Article

Abstract

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that inhibit gene expression post-transcriptionally. By regulating their target genes, miRNAs play important roles in tumor generation and development. Recently, the mir-200 family was revealed to inhibit the epithelial-mesenchymal transition, which is viewed as an essential step in early tumor metastasis. Here, we used luciferase assays to demonstrate that mir-200b interacts with predicted target sites in the 3′ untranslated region of RND3. In HeLa cells, mir-200b directly reduced the expression of RND3 at the mRNA and protein levels, which thereby promoted expression of the downstream protein cyclin D1 and increased S-phase entry. In conclusion, our study demonstrates a novel role for mir-200b in cell cycle progression and identifies RND3 as a novel mir-200b target.

Keywords

miRNA RND3 Cell cycle CCND1 

References

  1. 1.
    Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060CrossRefPubMedGoogle Scholar
  2. 2.
    Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419CrossRefPubMedGoogle Scholar
  3. 3.
    Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98CrossRefPubMedGoogle Scholar
  4. 4.
    Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016CrossRefPubMedGoogle Scholar
  5. 5.
    Gregory R, Chendrimada T, Cooch N et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640CrossRefPubMedGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:287–297CrossRefGoogle Scholar
  7. 7.
    Hwang HW, Mendel JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng AM, Byrom MW, Shelton J et al (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297CrossRefPubMedGoogle Scholar
  9. 9.
    Kawasaki H, Taira K (2003) Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 423:838–842CrossRefPubMedGoogle Scholar
  10. 10.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688CrossRefPubMedGoogle Scholar
  11. 11.
    Tavazoie SF, Alarco C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152CrossRefPubMedGoogle Scholar
  12. 12.
    Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601CrossRefPubMedGoogle Scholar
  13. 13.
    Park SM, Gaur AB, Lengyel E et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907CrossRefPubMedGoogle Scholar
  14. 14.
    Liu Xia, Xia Wei, Dai Yinmei et al (2009) Expression of microRNAs in endometrioid adenocarcinoma. Natl Med J China 89:1365–1367Google Scholar
  15. 15.
    Ladeiro Y, Couchy G, Balabaud C et al (2008) MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 47:1955–1963CrossRefPubMedGoogle Scholar
  16. 16.
    Nam EJ, Yoon H, Kim SW et al (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14:2690–2695CrossRefPubMedGoogle Scholar
  17. 17.
    Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44:556–561CrossRefPubMedGoogle Scholar
  18. 18.
    Cui J, Fu H, Feng J et al (2007) The construction of miRNA expression library for human. Prog Biochem Biophys 34:389–394Google Scholar
  19. 19.
    Fu HJ, Zhu J, Yang M et al (2006) A novel method to monitor the expression of microRNAs. Mol Biotechnol 32:197–204CrossRefPubMedGoogle Scholar
  20. 20.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  21. 21.
    Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27:5848–5856CrossRefPubMedGoogle Scholar
  22. 22.
    Sossey-Alaoui K, Bialkowska K, Plow EF (2009) The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem 284:33019–33029CrossRefPubMedGoogle Scholar
  23. 23.
    Lin CH, Jackson AL, Guo J et al (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28:3157–3170CrossRefPubMedGoogle Scholar
  24. 24.
    Adam L, Zhong M, Choi W et al (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15:5060–5072CrossRefPubMedGoogle Scholar
  25. 25.
    Hyun S, Lee JH, Jin H et al (2009) Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3 K. Cell 139:1096–1108CrossRefPubMedGoogle Scholar
  26. 26.
    Villalonga P, Guasch RM, Riento K et al (2004) RND3 inhibits cell cycle progression and Ras-induced transformation. Mol Cell Biol 24:7829–7840CrossRefPubMedGoogle Scholar
  27. 27.
    Riento K, Villalonga P, Garg R et al (2005) Function and regulation of RND3. Biochem Soc Trans 33:649–651CrossRefPubMedGoogle Scholar
  28. 28.
    Guasch RM, Scambler P, Jones GE et al (1998) RND3 regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 18:4761–4771PubMedGoogle Scholar
  29. 29.
    Chardin P (2006) Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol 7:54–62CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Wei Xia
    • 1
  • Jie Li
    • 1
  • Liucun Chen
    • 1
  • Baochun Huang
    • 1
  • Shaohua Li
    • 1
  • Guang Yang
    • 1
  • Hongmei Ding
    • 1
  • Fang Wang
    • 1
  • Nongle Liu
    • 1
  • Qiang Zhao
    • 1
  • Tao Fang
    • 1
  • Tao Song
    • 2
  • Tianyou Wang
    • 3
  • Ningsheng Shao
    • 1
  1. 1.Beijing Institute of Basic Medical SciencesBeijingChina
  2. 2.Chinese PLA General HospitalBeijingChina
  3. 3.Capital Institute of PediatricsBeijingChina

Personalised recommendations