Skip to main content
Log in

Zebrafish Ubc13 is required for Lys63-linked polyubiquitination and DNA damage tolerance

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ubiquitination is an important post-translational protein modification that functions in diverse cellular processes of all eukaryotic organisms. Conventional Lys48-linked poly-ubiquitination leads to the degradation of specific proteins through 26S proteasomes, while Lys63-linked polyubiquitination appears to regulate protein activities in a non-proteolytic manner. To date, Ubc13 is the only known ubiquitin-conjugating enzyme capable of poly-ubiquitinating target proteins via Lys63-linked chains, and this activity absolutely requires a Ubc variant (Uev or Mms2) as a co-factor. However, Lys63-linked poly-ubiquitination and error-free DNA damage tolerance in zebrafish are yet to be defined. Here, we report molecular cloning and functional characterization of two zebrafish ubc13 genes, ubc13a and ubc13b. Analysis of their genomic structure, nucleotide and protein sequence indicates that the two genes are highly conserved during evolution and derived from whole genome duplication. Zebrafish Ubc13 proteins are able to physically interact with yeast or human Mms2 and both zebrafish ubc13 genes are able to functionally complement the yeast ubc13 null mutant for spontaneous mutagenesis and sensitivity to DNA damaging agents. In addition, upon DNA damage, the expression of zebrafish ubc13a and ubc13b is induced during embryogenesis and zebrafish Ubc13 is associated with nuclear chromatin. These results suggest the involvement of Lys63-linked poly-ubiquitylation in DNA damage response in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Ann Rev Biochem 61:761–807

    Article  CAS  PubMed  Google Scholar 

  2. Tokunaga F, Sakata S, Saeki Y et al (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132

    Article  CAS  PubMed  Google Scholar 

  3. Moynagh PN (2009) The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol 30:33–42

    Article  CAS  PubMed  Google Scholar 

  4. Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24:3353–3359

    Article  CAS  PubMed  Google Scholar 

  5. Kao CF, Hillyer C, Tsukuda T et al (2004) Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18:184–195

    Article  CAS  PubMed  Google Scholar 

  6. Geng F, Tansey WP (2008) Polyubiquitylation of histone H2B. Mol Biol Cell 19:3616–3624

    Article  CAS  PubMed  Google Scholar 

  7. Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401

    Article  CAS  PubMed  Google Scholar 

  8. Kotoshiba S, Kamura T, Hara T et al (2005) Molecular dissection of the interaction between p27 and Kip1 ubiquitylation-promoting complex, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J Biol Chem 280:17694–17700

    Article  CAS  PubMed  Google Scholar 

  9. Wei W, Ayad NG, Wan Y et al (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194–198

    Article  CAS  PubMed  Google Scholar 

  10. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  CAS  PubMed  Google Scholar 

  11. Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131–134

    Article  CAS  PubMed  Google Scholar 

  12. Pastushok L, Xiao W (2004) DNA postreplication repair modulated by ubiquitination and sumoylation. Adv Protein Chem 69:279–306

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653

    Article  CAS  PubMed  Google Scholar 

  14. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  CAS  PubMed  Google Scholar 

  15. Jentsch S (1992) Ubiquitin-dependent protein degradation: a cellular perspective. Trends Cell Biol 2:98–103

    Article  CAS  PubMed  Google Scholar 

  16. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  17. Hatakeyama S, Nakayama KI (2003) Ubiquitylation as a quality control system for intracellular proteins. J Biochem 134:1–8

    Article  CAS  PubMed  Google Scholar 

  18. Broomfield S, Chow BL, Xiao W (1998) MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci 95:5678–5683

    Article  CAS  PubMed  Google Scholar 

  19. Hoege C, Pfander B, Moldovan GL et al (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  CAS  PubMed  Google Scholar 

  20. Ulrich HD, Jentsch S (2000) Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J 19:3388–3397

    Article  CAS  PubMed  Google Scholar 

  21. Xiao W, Chow BL, Broomfield S et al (2000) The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 155:1633–1641

    CAS  PubMed  Google Scholar 

  22. Broomfield S, Hryciw T, Xiao W (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486:167–184

    CAS  PubMed  Google Scholar 

  23. Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  24. Takahashi N, Dawid IB (2005) Characterization of zebrafish Rad52 and replication protein A for oligonucleotide-mediated mutagenesis. Nucleic Acids Res 33:e120

    Article  PubMed  Google Scholar 

  25. Bladen CL, Lam WK, Dynan WS et al (2005) DNA damage response and Ku80 function in the vertebrate embryo. Nucleic Acids Res 33:3002–3010

    Article  CAS  PubMed  Google Scholar 

  26. Bladen CL, Navarre S, Dynan WS et al (2007) Expression of the Ku70 subunit (XRCC6) and protection from low dose ionizing radiation during zebrafish embryogenesis. Neurosci Lett 422:97–102

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Shupenko CC, Melo LF et al (2006) DNA repair protein involved in heart and blood development. Mol Cell Biol 26:9083–9093

    Article  CAS  PubMed  Google Scholar 

  28. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  29. Xiao W, Samson L (1993) In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc Natl Acad Sci 90:2117–2121

    Article  CAS  PubMed  Google Scholar 

  30. Williamson MS, Game JC, Fogel S (1985) Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics 110:609–646

    CAS  PubMed  Google Scholar 

  31. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    CAS  PubMed  Google Scholar 

  32. Pastushok L, Moraes TF, Ellison MJ et al (2005) A single Mms2 “key” residue insertion into a Ubc13 pocket determines the interface specificity of a human Lys63 ubiquitin conjugation complex. J Biol Chem 280:7891–17900

    Google Scholar 

  33. Driever W, Rangini Z (1993) Characterization of a cell line derived from zebrafish (Brachydanio rerio) embryos. In vitro Cell Dev Biol 29(A):749–754

    Article  Google Scholar 

  34. Winer J, Jung CK, Shackel I et al (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49

    Article  CAS  PubMed  Google Scholar 

  35. Wooff J, Pastushok L, Hanna M, Fu Y et al (2004) The TRAF6 RING finger domain mediates physical interaction with Ubc13. FEBS Lett 566:229–233

    Article  CAS  PubMed  Google Scholar 

  36. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  37. Hofmann RM, Pickart CM (2001) In vitro assembly and recognition of Lys-63 polyubiquitin chains. J Biol Chem 276:27936–27943

    Article  CAS  PubMed  Google Scholar 

  38. Wen R, Newton L, Li G, Wang H et al (2006) Arabidopsis thaliana UBC13: implication of error-free DNA damage tolerance and Lys63-linked polyubiquitylation in plants. Plant Mol Biol 61:241–253

    Article  CAS  PubMed  Google Scholar 

  39. Wen R, Torres-Acosta JA, Pastushok L et al (2008) Arabidopsis UEV1D promotes Lysine-63-linked polyubiquitination and is involved in DNA damage response. Plant Cell 20:213–227

    Article  CAS  PubMed  Google Scholar 

  40. Brusky J, Zhu Y, Xiao W (2000) UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr Genet 37:168–174

    Article  CAS  PubMed  Google Scholar 

  41. Andersen PL, Zhou H, Pastushok L et al (2005) Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J Cell Biol 170:745–755

    Article  CAS  PubMed  Google Scholar 

  42. Ryan AJ, Squires S, Strutt HL, Johnson RT (1991) Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19:3295–3300

    Article  CAS  PubMed  Google Scholar 

  43. Tsao YP, Russo A, Nyamuswa G et al (1993) Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res 53:5908–5914

    CAS  PubMed  Google Scholar 

  44. Myung K, Kolodner RD (2003) Induction of genome instability by DNA damage in Saccharomyces cerevisiae. DNA Repair 2:243–258

    Article  CAS  PubMed  Google Scholar 

  45. Andegeko Y, Moyal L, Mittelman L et al (2001) Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 276:38224–38230

    CAS  PubMed  Google Scholar 

  46. McKenna S, Spyracopoulos L, Moraes T et al (2001) Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J Biol Chem 276:40120–40126

    Article  CAS  PubMed  Google Scholar 

  47. Arnason T, Ellison MJ (1994) Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14:7876–7883

    CAS  PubMed  Google Scholar 

  48. Zhao GY, Sonoda E, Barber LJ et al (2007) A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol cell 25:663–675

    Article  CAS  PubMed  Google Scholar 

  49. Fisk HA, Yaffe MP (1999) A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J Cell Biol 145:1199–1208

    Article  CAS  PubMed  Google Scholar 

  50. Galan JM, Haguenauer-Tsapis R (1997) Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847–5854

    Article  CAS  PubMed  Google Scholar 

  51. Keating SE, Bowie AG (2009) Role of non-degradative ubiquitination in interleukin-1 and toll-like receptor signaling. J Biol Chem 284:8211–8215

    Article  CAS  PubMed  Google Scholar 

  52. Zhou H, Wertz I, O’Rourke K et al (2004) Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427:167–171

    Article  CAS  PubMed  Google Scholar 

  53. Muralidhar MG, Thomas JB (1993) The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 11:253–266

    Article  CAS  PubMed  Google Scholar 

  54. Oh CE, McMahon R, Benzer S et al (1994) bendless, a Drosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog. J Neurosci 14:3166–3179

    CAS  PubMed  Google Scholar 

  55. Ouyang M, Garnett AT, Han TM et al (2008) A web based resource characterizing the zebrafish developmental profile of over 16,000 transcripts. Gene Expr Patterns 8:171–180

    Article  CAS  PubMed  Google Scholar 

  56. Sussman R (2007) DNA repair capacity of zebrafish. Proc Natl Acad Sci 104:13379–13383

    Article  CAS  PubMed  Google Scholar 

  57. Deng L, Wang C, Spencer E et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361

    Article  CAS  PubMed  Google Scholar 

  58. Wang C, Deng L, Hong M et al (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    Article  CAS  PubMed  Google Scholar 

  59. Hall A (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

Download references

Acknowledgments

We thank various laboratories for kindly providing reagents and plasmids, Drs. Z. Zhu and H. Dai for their valuable comments and suggestions, and all other members in Cui and Xiao Laboratories for helpful suggestions and technical assistance. This work was supported by grants from the National Basic Research Program of China (#2009CB941200) and the Canadian Institutes of Health Research MOP-53240 to WX.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xiao or Zongbin Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wen, R., Andersen, P. et al. Zebrafish Ubc13 is required for Lys63-linked polyubiquitination and DNA damage tolerance. Mol Cell Biochem 343, 173–182 (2010). https://doi.org/10.1007/s11010-010-0511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0511-9

Keywords

Navigation