Skip to main content

Advertisement

Log in

Cysteine protects freshly isolated cardiomyocytes against oxidative stress by stimulating glutathione peroxidase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cysteine has been implicated in myocardial protection, although this is controversial and constrained by limited knowledge about the effects of cysteine at the cellular level. This study tested the hypothesis that a physiologically relevant dose of l-cysteine could be safely loaded into isolated cardiomyocytes leading to improved protection against oxidative stress. Freshly isolated adult rat ventricular cardiomyocytes were incubated for 2 h at 37°C with (cysteine incubated) or without (control) 0.5 mM cysteine prior to washing and suspension in fresh cysteine-free media. Cysteine incubated cells had higher intracellular cysteine levels compared to controls (9.6 ± 0.78 vs. 6.5 ± 0.65 nmol/mg protein, P < 0.02, n = 6 ± SE). Cell homeostasis indicators were similar in the two groups. Cysteine incubated cells had significantly higher glutathione peroxidase (GPx) activity (1.11 ± 0.23 vs. 0.54 ± 0.1 U/mg protein, P < 0.05, n = 5 ± SE) and significantly greater expression of GPx-1 (5.01 ± 0.48 vs. 3.01 ± 0.25 OD units/mm2, P < 0.05, n = 4 ± SE) compared to controls. Upon exposure to H2O2, cysteine incubated cells generated fewer reactive oxygen species and took longer to show contractile changes and undergo hypercontracture. However, when cells were exposed to H2O2 in the presence of 0.05 mM of the GPx inhibitor mercaptosuccinic acid, this increased the control cells’ susceptibility to H2O2 and completely abolished the cysteine mediated protection. These results suggest a new role for cysteine in myocardial protection involving stimulation of glutathione peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jahoor F, Jackson A, Gazzard B, Philips G, Sharpstone D, Frazer ME, Heird W (1999) Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. Am J Physiol 276:E205–E211

    CAS  PubMed  Google Scholar 

  2. Cooper AJL (1982) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52:187–222

    Article  Google Scholar 

  3. Chua BHL, Giger KE, Kleinhans BJ, Robishaw JD, Morgan HE (1984) Differential effects of cysteine on protein and coenzyme A synthesis in rat heart. Am J Physiol 247:C99–C106

    CAS  PubMed  Google Scholar 

  4. Gabrys J, Konecki J, Shani J, Durczok A, Bielacyzc G, Kosteczko A, Szewczyk H, Brus B (2003) Proteinous amino acids in muscle cytosol of rats’ heart after exercise and hypoxia. Recept Channels 9:301–307

    CAS  PubMed  Google Scholar 

  5. Pisarenko OI (1996) Mechanisms of myocardial protection by amino acids: facts and hypotheses. Clin Exp Pharmacol Physiol 23:627–633

    Article  CAS  PubMed  Google Scholar 

  6. Burns AH, Reddy WJ (1978) Amino acid stimulation of oxygen and substrate utilization by cardiac myocytes. Am J Physiol 235:E461–E466

    CAS  PubMed  Google Scholar 

  7. Baños G, Daniel PM, Moorhouse SR, Pratt OE, Wilson PA (1978) The influx of amino acids into the heart of the rat. J Physiol 280:471–486

    PubMed  Google Scholar 

  8. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    Article  CAS  PubMed  Google Scholar 

  9. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischaemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  CAS  PubMed  Google Scholar 

  10. Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashadini S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157

    CAS  PubMed  Google Scholar 

  11. Slezak J, Tribulova N, Pristacova J, Uhrik B, Thomas T, Knaper N, Kaul N, Singal PK (1995) Hydrogen peroxide changes in ischemic and reperfused heart. Am J Pathol 147:772–781

    CAS  PubMed  Google Scholar 

  12. Tang L-D, Sun J-Z, Wu K, Sun C-P, Tang Z-M (1991) Beneficial effects of N-acetylcysteine and cysteine in stunned myocardium in perfused rat heart. Br J Pharmacol 102:601–606

    CAS  PubMed  Google Scholar 

  13. Shackebaei D, King N, Shukla B, Suleiman M-S (2005) Mechanisms underlying the cardioprotective effect of l-cysteine. Mol Cell Biochem 277:27–31

    Article  CAS  PubMed  Google Scholar 

  14. Tani M (1990) Effects of anti-free radical agents on Na+, Ca2+, and function in reperfused rat hearts. Am J Physiol 259:H137–H143

    CAS  PubMed  Google Scholar 

  15. Saez G, Thornalley PJ, Hill HAO, Hems R, Bannister JV (1982) The production of free radicals during the autoxidation of cysteine and their effects on isolated rat hepatocytes. Biochim Biophys Acta 719:24–31

    CAS  PubMed  Google Scholar 

  16. Lin H, King N, McGivan JD, Suleiman M-S (2004) Expression of ASCT2 and characterization of cysteine uptake in isolated rat cardiomyocytes. J Physiol 557P:14PC

    Google Scholar 

  17. Lin H, McGivan JD, Suleiman M-S, King N (2006) Expression and activity of SNAT2 in isolated rat cardiomyocytes. Acta Physiol 186(suppl1):PM06-18

    Google Scholar 

  18. Williams H, King N, Griffiths EJ, Suleiman M-S (2001) Glutamate-loading stimulates metabolic flux and improves cell recovery following chemical hypoxia in isolated cardiomyocytes. J Mol Cell Cardiol 33:2109–2119

    Article  CAS  PubMed  Google Scholar 

  19. King N, McGivan JD, Griffiths EJ, Suleiman M-S (2003) Glutamate loading protects freshly isolated and perfused adult cardiomyocytes against intracellular ROS generation. J Mol Cell Cardiol 35:975–984

    Article  CAS  PubMed  Google Scholar 

  20. Molecular Probes product Information (2005) Fura and Indo ratiometric calcium indicators. http://probes.invitrogen.com/media/pis/mp01200.pdf

  21. Campanella L, Crescentini G, Avino P (1999) Simultaneous determination of cysteine, cystine and 18 other amino acids in various matrices by high-performance liquid chromatography. J Chromatogr A 833:137–145

    Article  CAS  PubMed  Google Scholar 

  22. King N, Lin H, McGivan JD, Suleiman M-S (2004) Aspartate transporter expression and activity in hypertrophic rat heart and ischaemia-reperfusion injury. J Physiol 556:849–858

    Article  CAS  PubMed  Google Scholar 

  23. Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA (2004) Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24:1531–1540

    Article  CAS  PubMed  Google Scholar 

  24. Chaudiere J, Wilhelmsen EC, Tappel AL (1984) Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans. J Biol Chem 259:1043–1050

    CAS  PubMed  Google Scholar 

  25. Tanaka H, Sakurai K, Takahashi K, Fujimoto Y (2003) Requirement of intracellular free thiols for hydrogen peroxide-induced hypertrophy in cardiomyocytes. J Cell Biochem 89:944–955

    Article  CAS  PubMed  Google Scholar 

  26. Kwon SH, Pimmentel DR, Remondino A, Sawyer DB, Colucci WS (2003) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35:615–621

    Article  CAS  PubMed  Google Scholar 

  27. Bogoyevitch MA, Ng DCH, Court NW, Draper KA, Dhillon A, Abas L (2000) Intact mitochondrial electron transport function is essential for signaling by hydrogen peroxide in cardiac myocytes. J Mol Cell Cardiol 32:1469–1480

    Article  CAS  PubMed  Google Scholar 

  28. Maulik N, Yoshida T, Das DK (1999) Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 196:13–21

    Article  CAS  PubMed  Google Scholar 

  29. Cao C, Leng Y, Huang W, Liu X, Kufe D (2003) Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J Biol Chem 278:39609–39614

    Article  CAS  PubMed  Google Scholar 

  30. Li R-K, Cowan DB, Mickle DAG, Weisel RD, Burton GW (1996) Effect of vitamin E on human glutathione peroxidase (GSH-PX1) expression in cardiomyocytes. Free Radic Biol Med 21:419–426

    Article  CAS  PubMed  Google Scholar 

  31. Espinola-Klein C, Rupprecht HJ, Bickel C, Schnabel R, Genth-Zotz S, Torzewski M, Lackner K, Munzel T, Blankenberg S (2007) Glutathione peroxidase-1 activity, atherosclerotic burden, and cardiovascular prognosis. Am J Cardiol 99:808–812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Project Grant no. PG/05/030 from the British Heart Foundation, and by NIHR Bristol BRU in Cardiovascular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, N., Lin, H. & Suleiman, MS. Cysteine protects freshly isolated cardiomyocytes against oxidative stress by stimulating glutathione peroxidase. Mol Cell Biochem 343, 125–132 (2010). https://doi.org/10.1007/s11010-010-0506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0506-6

Keywords

Navigation