Skip to main content
Log in

Characterization of apoA-I-dependent lipid efflux from adipocytes and role of ABCA1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adipose tissue is a major reservoir of cholesterol and, as such, it may play a significant role in cholesterol homeostasis. The aims of this study were to obtain a quantitative characterization of apolipoprotein A-I (apoA-I)-dependent lipid efflux from adipocytes and examine the role of ATP-binding cassette transporter A1 (ABCA1) in this process. The rates of apoA-I-induced cholesterol and phospholipid efflux were determined and normalized by cellular protein or ABCA1 levels. In order to allow a comparative analysis, parallel experiments were also performed in macrophages. These studies showed that apoA-I induces cholesterol efflux from adipocytes at similar rates as from macrophages. Enhancement of the expression of ABCA1 increased the rates of cholesterol efflux from both adipocytes and macrophages. The results also suggested that a non-ABCA1-dependent mechanism could make significant contributions to the rate of apoA-I-dependent cholesterol efflux when the expression levels of ABCA1 are low. Furthermore, the study of the effect of inhibitors of lipid efflux showed that glyburide and brefeldin A, which affect ABCA1 function, exerted strong and similar inhibitory effects on lipid efflux from both adipocytes and macrophages, whereas BLT1, an SRB-I inhibitor, only exerted a moderate inhibition. Overall these studies suggest that ABCA1 plays a major role in apoA-I-dependent lipid efflux from adipocytes and showed high similarities between the abilities of adipocytes and macrophages to release cholesterol in an apoA-I-dependent fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ApoA-I:

Apolipoprotein A-I

ABCA1:

ATP-binding cassette transporter A1

GLYB:

Glyburide

BFA:

Brefeldin A

LXR:

Liver X receptor

BLT:

Block lipid transport

BSA:

Bovine serum albumin

FBS:

Fetal bovine serum

CL:

Cholesterol

PL:

Phospholipid

SR-BI:

Scavenger receptor-BI

BLT4:

Block lipid transport-4

BLT1:

Block lipid transport-1

References

  1. Babiker A, Andersson O, Lund E, Xiu RJ, Deeb S, Reshef A, Leitersdorf E, Diczfalusy U, Bjorkhem I (1997) Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 272:26253–26261

    Article  CAS  PubMed  Google Scholar 

  2. Chiang JY (1998) Regulation of bile acid synthesis. Front biosci 3:d176–d193

    CAS  PubMed  Google Scholar 

  3. Wang N, Silver DL, Thiele C, Tall AR (2001) ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 276:23742–23747

    Article  CAS  PubMed  Google Scholar 

  4. Chambenoit O, Hamon Y, Marguet D, Rigneault H, Rosseneu M, Chimini G (2001) Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. J Biol Chem 276:9955–9960

    Article  CAS  PubMed  Google Scholar 

  5. Vedhachalam C, Duong PT, Nickel M, Nguyen D, Dhanasekaran P, Saito H, Rothblat GH, Lund-Katz S, Phillips MC (2007) Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J Biol Chem 282:25123–25130

    Article  CAS  PubMed  Google Scholar 

  6. Wang N, Silver DL, Costet P, Tall AR (2000) Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275:33053–33058

    Article  CAS  PubMed  Google Scholar 

  7. Oram JF, Lawn RM, Garvin MR, Wade DP (2000) ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem 275:34508–34511

    Article  CAS  PubMed  Google Scholar 

  8. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J Jr, Hayden MR (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    Article  CAS  PubMed  Google Scholar 

  9. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    Article  CAS  PubMed  Google Scholar 

  10. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22:352–355

    Article  CAS  PubMed  Google Scholar 

  11. Fredrickson DS, Attrocchi PH, Avioli LV, Goodman DS, Goodman HC (1961) Tangier Disease. Ann Intern Med 55:1016

    Google Scholar 

  12. Francis GA, Knopp RH, Oram JF (1995) Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier disease. J Clin Investig 96:78–87

    Article  CAS  PubMed  Google Scholar 

  13. Remaley AT, Schumacher UK, Stonik JA, Farsi BD, Nazih H, Brewer HB Jr (1997) Decreased reverse cholesterol transport from Tangier disease fibroblasts Acceptor specificity and effect of brefeldin on lipid efflux. Arterioscler Thromb Vasc Biol 17:1813–1821

    CAS  PubMed  Google Scholar 

  14. Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith TL, Hayden MR, Maeda N, Parks JS (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Investig 115:1333–1342

    CAS  PubMed  Google Scholar 

  15. Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM, Pape TD, Coburn BA, Bissada N, Staels B, Groen AK, Hussain MM, Parks JS, Kuipers F, Hayden MR (2006) Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Investig 116:1052–1062

    Article  CAS  PubMed  Google Scholar 

  16. Farkas J, Angel A, Avigan M (1973) I. Studies on the compartmentation of lipid in adipose cells. II. Cholesterol accumulation and distribution in adipose tissue components. J Lipid Res 14:344–356

    CAS  PubMed  Google Scholar 

  17. Ailhaud G, Grimaldi P, Negrel R (1992) Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12:207–233

    Article  CAS  PubMed  Google Scholar 

  18. Kovanen PT, Nikkila EA, Miettinen TA (1975) Regulation of cholesterol synthesis and storage in fat cells. J Lipid Res 16:211–223

    CAS  PubMed  Google Scholar 

  19. Krause BR, Hartman AD (1984) Adipose tissue and cholesterol metabolism. J Lipid Res 25:97–110

    CAS  PubMed  Google Scholar 

  20. Yamauchi Y, Abe-Dohmae S, Yokoyama S (2002) Differential regulation of apolipoprotein A-I/ATP binding cassette transporter A1-mediated cholesterol and phospholipid release. Biochim Biophys Acta 1585:1–10

    CAS  PubMed  Google Scholar 

  21. Yokoyama S (2006) ABCA1 and biogenesis of HDL. J Atheroscler Thromb 13:1–15

    CAS  PubMed  Google Scholar 

  22. Hara H, Yokoyama S (1991) Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem 266:3080–3086

    CAS  PubMed  Google Scholar 

  23. Liu L, Bortnick AE, Nickel M, Dhanasekaran P, Subbaiah PV, Lund-Katz S, Rothblat GH, Phillips MC (2003) Effects of apolipoprotein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol: formation of nascent high density lipoprotein particles. J Biol Chem 278:42976–42984

    Article  CAS  PubMed  Google Scholar 

  24. Li Q, Komaba A, Yokoyama S (1993) Cholesterol is poorly available for free apolipoprotein-mediated cellular lipid efflux from smooth muscle cells. Biochemistry 32:4597–4603

    Article  CAS  PubMed  Google Scholar 

  25. Prattes S, Horl G, Hammer A, Blaschitz A, Graier WF, Sattler W, Zechner R, Steyrer E (2000) Intracellular distribution and mobilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. J Cell Sci 113(Pt 17):2977–2989

    CAS  PubMed  Google Scholar 

  26. Le Lay S, Robichon C, Le Liepvre X, Dagher G, Ferre P, Dugail I (2003) Regulation of ABCA1 expression and cholesterol efflux during adipose differentiation of 3T3–L1 cells. J Lipid Res 44:1499–1507

    Article  CAS  PubMed  Google Scholar 

  27. Rubin CS, Hirsch A, Fung C, Rosen OM (1978) Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3–L1 cells. J Biol Chem 253:7570–7578

    CAS  PubMed  Google Scholar 

  28. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  29. Verghese PB, Arrese EL, Howard AD, Soulages JL (2008) Brefeldin A inhibits cholesterol efflux without affecting the rate of cellular uptake and re-secretion of apolipoprotein A-I in adipocytes. Arch Biochem Biophys 478:161–166

    Article  CAS  PubMed  Google Scholar 

  30. Vedhachalam C, Liu L, Nickel M, Dhanasekaran P, Anantharamaiah GM, Lund-Katz S, Rothblat GH, Phillips MC (2004) Influence of ApoA-I structure on the ABCA1-mediated efflux of cellular lipids. J Biol Chem 279:49931–49939

    Article  CAS  PubMed  Google Scholar 

  31. Sakr SW, Williams DL, Stoudt GW, Phillips MC, Rothblat GH (1999) Induction of cellular cholesterol efflux to lipid-free apolipoprotein A-I by cAMP. Biochim Biophys Acta 1438:85–98

    CAS  PubMed  Google Scholar 

  32. Smith JD, Miyata M, Ginsberg M, Grigaux C, Shmookler E, Plump AS (1996) Cyclic AMP induces apolipoprotein E binding activity and promotes cholesterol efflux from a macrophage cell line to apolipoprotein acceptors. J Biol Chem 271:30647–30655

    Article  CAS  PubMed  Google Scholar 

  33. Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ, McNeish J, Francone OL (2000) The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J Biol Chem 275:28634–28640

    Article  CAS  PubMed  Google Scholar 

  34. Abe-Dohmae S, Suzuki S, Wada Y, Aburatani H, Vance DE, Yokoyama S (2000) Characterization of apolipoprotein-mediated HDL generation induced by cAMP in a murine macrophage cell line. Biochemistry 39:11092–11099

    Article  CAS  PubMed  Google Scholar 

  35. Oliver WR Jr, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Willson TM (2001) A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–5311

    Article  CAS  PubMed  Google Scholar 

  36. Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB, Castrillo A, Wilpitz DC, Mangelsdorf DJ, Collins JL, Saez E, Tontonoz P (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 100:5419–5424

    Article  CAS  PubMed  Google Scholar 

  37. Hummasti S, Laffitte BA, Watson MA, Galardi C, Chao LC, Ramamurthy L, Moore JT, Tontonoz P (2004) Liver X receptors are regulators of adipocyte gene expression but not differentiation: identification of apoD as a direct target. J Lipid Res 45:616–625

    Article  CAS  PubMed  Google Scholar 

  38. Sheppard DN, Welsh MJ (1992) Effect of ATP-sensitive K + channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol 100:573–591

    Article  CAS  PubMed  Google Scholar 

  39. Sturgess NC, Ashford ML, Cook DL, Hales CN (1985) The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2:474–475

    Article  CAS  PubMed  Google Scholar 

  40. Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ (2000) Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118:422–430

    Article  CAS  PubMed  Google Scholar 

  41. Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O (2001) The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br J Pharmacol 132:778–784

    Article  CAS  PubMed  Google Scholar 

  42. Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R (1999) P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Archiv 437:652–660

    Article  CAS  PubMed  Google Scholar 

  43. Becq F, Hamon Y, Bajetto A, Gola M, Verrier B, Chimini G (1997) ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes. J Biol Chem 272:2695–2699

    Article  CAS  PubMed  Google Scholar 

  44. Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ (2000) A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39:14113–14120

    Article  CAS  PubMed  Google Scholar 

  45. Smith JD, Le Goff W, Settle M, Brubaker G, Waelde C, Horwitz A, Oda MN (2004) ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid Res 45:635–644

    Article  CAS  PubMed  Google Scholar 

  46. Kiss RS, Maric J, Marcel YL (2005) Lipid efflux in human and mouse macrophagic cells: evidence for differential regulation of phospholipid and cholesterol efflux. J Lipid Res 46:1877–1887

    Article  CAS  PubMed  Google Scholar 

  47. Zha X, Gauthier A, Genest J, McPherson R (2003) Secretory vesicular transport from the Golgi is altered during ATP-binding cassette protein A1 (ABCA1)-mediated cholesterol efflux. J Biol Chem 278:10002–10005

    Article  CAS  PubMed  Google Scholar 

  48. Mendez AJ, Uint L (1996) Apolipoprotein-mediated cellular cholesterol and phospholipid efflux depend on a functional Golgi apparatus. J Lipid Res 37:2510–2524

    CAS  PubMed  Google Scholar 

  49. Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM, Comly M, Dwyer NK, Zhang M, Blanchette-Mackie J, Santamarina-Fojo S, Brewer HB Jr (2001) Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 276:27584–27590

    Article  CAS  PubMed  Google Scholar 

  50. Nieland TJ, Chroni A, Fitzgerald ML, Maliga Z, Zannis VI, Kirchhausen T, Krieger M (2004) Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide. J Lipid Res 45:1256–1265

    Article  CAS  PubMed  Google Scholar 

  51. Nieland TJ, Penman M, Dori L, Krieger M, Kirchhausen T (2002) Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci USA 99:15422–15427

    Article  CAS  PubMed  Google Scholar 

  52. Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, Rothblat GH, Swaney JB, Tall AR (1997) Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 272:20982–20985

    Article  CAS  PubMed  Google Scholar 

  53. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271:518–520

    Article  CAS  PubMed  Google Scholar 

  54. Pascot A, Lemieux I, Prud’homme D, Tremblay A, Nadeau A, Couillard C, Bergeron J, Lamarche B, Despres JP (2001) Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 42:2007–2014

    CAS  PubMed  Google Scholar 

  55. Despres JP (1994) Dyslipidaemia and obesity. Bailliere Clin Endocrinol Metabol 8:629–660

    Article  CAS  Google Scholar 

  56. Williams PT, Vranizan KM, Austin MA, Krauss RM (1993) Associations of age, adiposity, alcohol intake, menstrual status, and estrogen therapy with high-density lipoprotein subclasses. Arterioscler thromb 13:1654–1661

    CAS  PubMed  Google Scholar 

  57. Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW (2002) Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J Biol Chem 277:33178–33187

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka AR, Abe-Dohmae S, Ohnishi T, Aoki R, Morinaga G, Okuhira K, Ikeda Y, Kano F, Matsuo M, Kioka N, Amachi T, Murata M, Yokoyama S, Ueda K (2003) Effects of mutations of ABCA1 in the first extracellular domain on subcellular trafficking and ATP binding/hydrolysis. J Biol Chem 278:8815–8819

    Article  CAS  PubMed  Google Scholar 

  59. Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, Kaminski WE, Schmitz G (1999) Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun 257:29–33

    Article  CAS  PubMed  Google Scholar 

  60. Schmitz G, Fischer H, Beuck M, Hoecker KP, Robenek H (1990) Dysregulation of lipid metabolism in Tangier monocyte-derived macrophages. Arterioscler (Dallas, Tex) 10:1010–1019

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Noah Barnes for his assistance in cell culture and data collection. This study was funded by Oklahoma State Experiment Station, and NIH Grant GM55622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Soulages.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, A.D., Verghese, P.B., Arrese, E.L. et al. Characterization of apoA-I-dependent lipid efflux from adipocytes and role of ABCA1. Mol Cell Biochem 343, 115–124 (2010). https://doi.org/10.1007/s11010-010-0505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0505-7

Keywords

Navigation