Skip to main content

Advertisement

Log in

MK-801 effect on regional cerebral oxidative stress rate induced by different duration of global ischemia in gerbils

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated MK-801 effect on ischemia-induced oxidative stress—the most important factor that exacerbates brain damage by reperfusion. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. Immediately after the occlusion, MK-801 (3 mg/kg i.p.) or saline were given in normothermic conditions. The MK-801 effects were followed in vivo by monitoring the neurological status of animals and at the intracellular level by standard biochemical assays. We investigated nitric oxide levels, superoxide production, superoxide dismutase activity, index of lipid peroxidation (ILP), and reduced glutathione content in hippocampus, striatum, forebrain cortex, and cerebellum. The measurements took place at different times (1, 2, 4, 7, 14, and 28 days) after reperfusion. Increased duration of cerebral ischemia resulted in a progressive induction of oxidative stress. Our results revealed pattern of dynamic changes in each oxidative stress parameter level which corresponded with ischemia duration in all tested brain structures. Most sensitive oxidative stress parameters were ILP and superoxide production. Our study confirmed spatial distribution of ischemia-induced oxidative stress. Tested brain structures showed different sensitivity to each oxidative stress parameter. As judged by biochemical and neurological data, applied MK-801 showed neuroprotective efficiency by reduction of ischemia-induced oxidative stress in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mehta S, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66. doi:10.1016/j.brainresrev.2006.11.003

    Article  PubMed  CAS  Google Scholar 

  2. Chung YH, Shin CM, Kim MJ, Shin DH, Yoo YB, Cha CI (2001) Spatial and temporal distribution of N-type Ca2+ channels in gerbil global cerebral ischemia. Brain Res 902:294–300. doi:10.1016/S0006-8993(01)02443-X

    Article  PubMed  CAS  Google Scholar 

  3. Sengpiel B, Preis E, Krieglstein J, Prehn JHM (1998) NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur J Neurosci 10:1903–1910. doi:10.1046/j.1460-9568.1998.00202.x

    Article  PubMed  CAS  Google Scholar 

  4. Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40:511–526. doi:10.1016/S0197-0186(01)00122-X

    Article  PubMed  CAS  Google Scholar 

  5. Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890. doi:10.1089/neu.2000.17.871

    Article  PubMed  CAS  Google Scholar 

  6. Nita DA, Nita V, Spulber S, Moldovan M, Popa DP, Zagrean AM, Zagrean L (2001) Oxidative damage following cerebral ischemia depends on reperfusion—a biochemical study in rat. J Cell Mol Med 5:163–170. doi:10.1111/j.1582-4934.2001.tb00149.x

    Article  PubMed  CAS  Google Scholar 

  7. Hazell AS (2007) Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int 50:941–953. doi:10.1016/j.neuint.2007.04.026

    Article  PubMed  CAS  Google Scholar 

  8. Villmann C, Becker CM (2007) On the hypes and falls in neuroprotection: targeting the NMDA receptor. Neuroscientist 13:594–615. doi:10.1177/1073858406296259

    Article  PubMed  CAS  Google Scholar 

  9. Gerriets T, Stolz E, Walberer M, Kaps M, Bachmann G, Fisher M (2003) Neuroprotective effects of MK-801 in different rat stroke models for permanent middle cerebral artery occlusion: adverse effects of hypothalamic damage and strategies for its avoidance. Stroke 34:2234–2239. doi:10.1161/01.STR.0000087171.34637.A9

    Article  PubMed  CAS  Google Scholar 

  10. Gerasimov VD, Artemenko DP, Krishtal OA (2004) Therapeutic time window for the neuroprotective action of MK-801 after decapitation ischemia: hippocampal slice data. Brain Res 1017:92–97. doi:10.1016/j.brainres.2004.05.024

    Article  PubMed  CAS  Google Scholar 

  11. Kluska MM, Witte OW, Bolz J, Redecker C (2005) Neurogenesis in the adult dentate gyrus after cortical infarcts: effects of infarct location, N-methyl-d-aspartate receptor blockade and anti-inflammatory treatment. Neuroscience 135:723–735. doi:10.1016/j.neuroscience.2005.06.082

    Article  PubMed  CAS  Google Scholar 

  12. Sheardown MJ, Suzdak PD, Nordholm L (1993) AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischemia, even when delayed 24 hours. Eur J Pharmacol 236:347–353. doi:10.1016/0014-2999(93)90470-3

    Article  PubMed  CAS  Google Scholar 

  13. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  14. Janac B, Radenovic L, Selakovic V, Prolic Z (2006) Time course of motor behavior changes in Mongolian gerbils submitted to different durations of cerebral ischemia. Behav Brain Res 175:362–373. doi:10.1016/j.bbr.2006.09.008

    Article  PubMed  Google Scholar 

  15. Radenovic L, Selakovic V, Bajic A, Andjus PR (2008) Implementation of confocal microscopy in the study of ischemia-induced hippocampal neuronal damage. Arch Biol Sci 60:561–565. doi:10.2298/ABS0804561R

    Article  Google Scholar 

  16. Janac B, Selakovic V, Radenovic L (2008) Temporal patterns of motor behavioural improvements by MK-801 in Mongolian gerbils submitted to different duration of global cerebral ischemia. Behav Brain Res 194:72–78. doi:10.1016/j.bbr.2008.06.031

    Article  PubMed  CAS  Google Scholar 

  17. Radenovic L, Selakovic V, Andjus PR (2008) Neuroprotection by MK-801 following cerebral ischemia in Mongolian gerbils. Arch Biol Sci 60:341–346. doi:10.2298/ABS0803341R

    Article  Google Scholar 

  18. Kuroiwa T, Bonnekoh P, Hossmann KA (1990) Prevention of postischemic hyperthermia prevents ischemic injury of CA1 neurons in gerbils. J Cereb Blood Flow Metab 10:550–556

    PubMed  CAS  Google Scholar 

  19. Buchan A, Pulsinelli WA (1990) Hypothermia but not the N-methyl-d-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10:311–316

    PubMed  CAS  Google Scholar 

  20. Vezzani A, Serafini R, Stasi MA, Caccia S, Conti I, Tridico RV, Samanin R (1989) Kinetics of MK-801 and its effect on quinolinic acid-induced seizures and neurotoxicity in rats. J Pharmacol Exp Ther 249:278–283

    PubMed  CAS  Google Scholar 

  21. Rossi S, Yaksh T (2003) Rapid quantification of the non-competitive NMDA antagonist MK-801 in canine cerebrospinal fluid and plasma by capillary gas chromatography-nitrogen phosphorus detection. J Pharm Biomed Anal 31:243–250. doi:10.1016/S0731-7085(02)00603-9

    Article  PubMed  CAS  Google Scholar 

  22. Kamiya T, Jacewicz M, Nowak TS Jr, Pulsinelli WA (2005) Cerebral blood flow thresholds for mRNA synthesis after focal ischemia and the effect of MK-801. Stroke 36:2463–2467. doi:10.1161/01.STR.0000185669.60271.78

    Article  PubMed  CAS  Google Scholar 

  23. Guevara I, Iwanejko J, Dembinska-Kiec A, Pankiewicz J, Wanat A, Anna P, Golabek I, Bartus S, Malczewska-Malec M, Szczudlik A (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274:177–188. doi:10.1016/S0009-8981(98)00060-6

    Article  PubMed  CAS  Google Scholar 

  24. Spitz DR, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179:8–18. doi:10.1016/0003-2697(89)90192-9

    Article  PubMed  CAS  Google Scholar 

  25. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    Article  PubMed  CAS  Google Scholar 

  26. Rehncrona S, Smith DS, Akesson B, Westerberg E, Siesjo BK (1980) Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+-and ascorbic acid-stimulated lipid peroxidation in vitro. J Neurochem 34:1630–1638. doi:10.1111/j.1471-4159.1980.tb11254.x

    Article  PubMed  CAS  Google Scholar 

  27. Anderson ME (1985) Tissue glutathione. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, FL, pp 317–323

    Google Scholar 

  28. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. Corbett D, Evans S, Thomas C, Wang D, Jonas RA (1990) MK-801 reduced cerebral ischemic injury by inducing hypothermia. Brain Res 514:300–304. doi:10.1016/0006-8993(90)91424-F

    Article  PubMed  CAS  Google Scholar 

  30. Moyanova SG, Kortenska LV, Mitreva RG, Pashova VD, Ngomba RT, Nicoletti F (2007) Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia. Brain Res 1153:58–67. doi:10.1016/j.brainres.2007.03.070

    Article  PubMed  CAS  Google Scholar 

  31. Rod MR, Whishaw IQ, Auer RN (1990) The relationship of structural ischemic brain damage to neurobehavioural deficit: the effect of postischemic MK-801. Can J Psychol 44:196–209. doi:10.1037/h0084242

    PubMed  CAS  Google Scholar 

  32. Zhang L, Mitani A, Yanase H, Kataoka K (1997) Continuous monitoring and regulating of brain temperature in the conscious and freely moving ischemic gerbil: effect of MK-801 on delayed neuronal death in hippocampal CA1. J Neurosci Res 47:440–448. doi:10.1002/(SICI)1097-4547(19970215)47:4<440:AID-JNR9>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  33. Warner MA, Neill KH, Nadler JV, Crain BJ (1991) Regionally selective effects of NMDA receptor antagonists against ischemic brain damage in the gerbil. J Cereb Blood Flow Metab 11:600–610

    PubMed  CAS  Google Scholar 

  34. Allaf R, Vistelle R, Boulu RG (2000) Inefficacy of N-methyl-d-aspartate receptor complex antagonists on behavioral and histologic consequences of global cerebral ischemia in rats. Ann Pharm Fr 58:266–270

    PubMed  CAS  Google Scholar 

  35. Trotti D, Rizzini BL, Rossi D, Haugeto O, Racagni G, Danbolt NC, Volterra A (1997) Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur J Neurosci 9:1236–1243. doi:10.1111/j.1460-9568.1997.tb01478.x

    Article  PubMed  CAS  Google Scholar 

  36. Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra A (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271:5976–5979. doi:10.1074/jbc.271.11.5976

    Article  PubMed  CAS  Google Scholar 

  37. Tseng WP, Lin-Shiau SY (2003) Activation of NMDA receptor partly involved in beta-bungarotoxin-induced neurotoxicity in cultured primary neurons. Neurochem Int 42:333–344. doi:10.1016/S0197-0186(02)00118-3

    Article  PubMed  CAS  Google Scholar 

  38. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    PubMed  CAS  Google Scholar 

  39. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14. doi:10.1097/00004647-200101000-00002

    Article  PubMed  CAS  Google Scholar 

  40. Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, León OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41:233–241. doi:10.1016/S0168-0102(01)00282-6

    Article  PubMed  CAS  Google Scholar 

  41. Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228. doi:10.1016/S0005-2728(98)00168-6

    Article  PubMed  CAS  Google Scholar 

  42. Lei B, Adachi N, Nagaro T, Arai T, Koehler RC (1999) Nitric oxide production in the CA1 field of the gerbil hippocampus after transient forebrain ischemia: effects of 7-nitroindazole and NG-nitro-l-arginine methyl ester. Stroke 30:669–677

    PubMed  CAS  Google Scholar 

  43. Brorson J, Schumacker PT, Zhang H (1999) Nitric oxide acutely inhibits neuronal energy production. J Neurosci 19:147–158

    PubMed  CAS  Google Scholar 

  44. Ciriolo MR, Aquilano K, De Martino A, Carri MT, Rotilio G (2001) Differential role of superoxide and glutathione in S-nitrosoglutathione-mediated apoptosis: a rationale for mild forms of familial amyotrophic lateral sclerosis associated with less active Cu, Zn superoxide dismutase mutants. J Neurochem 77:1433–1443. doi:10.1046/j.1471-4159.2001.00383.x

    Article  PubMed  CAS  Google Scholar 

  45. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624. doi:10.1073/pnas.87.4.1620

    Article  PubMed  CAS  Google Scholar 

  46. Beetsch JW, Park TS, Dugan LL, Shah AR, Gidday JM (1998) Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells. Brain Res 786:89–95. doi:10.1016/S0006-8993(97)01407-8

    Article  PubMed  CAS  Google Scholar 

  47. Manto M, Marmolino D (2009) Cerebellar disorders—at the crossroad of molecular pathways and diagnosis. Cerebellum 8:417–422. doi:10.1007/s12311-009-0142-4

    Article  PubMed  CAS  Google Scholar 

  48. Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG, Wood SA, Melega WP, Bigelow DJ, Smith DJ, Qian WJ, Smith RD (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9:1496–1509. doi:10.1021/pr901024z

    Article  PubMed  CAS  Google Scholar 

  49. Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, Nakamura M, Nunomura A, Perry G (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19:363–372

    PubMed  Google Scholar 

  50. Abraham PM, Paul J, Paulose CS (2010) Down regulation of cerebellar serotonergic receptors in streptozotocin induced diabetic rats: effect of pyridoxine and Aegle marmelose. Brain Res Bull. doi:10.1016/j.brainresbull.2010.02.005

  51. Bhanja S, Chainy GB (2010) PTU-induced hypothyroidism modulates antioxidant defence status in the developing cerebellum. Int J Dev Neurosci. doi:10.1016/j.ijdevneu.2010.01.005

  52. Bellés M, Alonso V, Linares V, Albina ML, Sirvent JJ, Domingo JL, Sánchez DJ (2010) Behavioral effects and oxidative status in brain regions of adult rats exposed to BDE-99. Toxicol Lett 194:1–7. doi:10.1016/j.toxlet.2010.01.010

    Article  PubMed  CAS  Google Scholar 

  53. Haces ML, Montiel T, Massieu L (2010) Selective vulnerability of brain regions to oxidative stress in a non-coma model of insulin-induced hypoglycemia. Neuroscience 165:28–38. doi:10.1016/j.neuroscience.2009.10.003

    Article  PubMed  CAS  Google Scholar 

  54. Prasanthi RP, Devi CB, Basha DC, Reddy NS, Reddy GR (2010) Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. Int J Dev Neurosci 28:161–167. doi:10.1016/j.ijdevneu.2009.12.002

    Article  PubMed  CAS  Google Scholar 

  55. Pocernich CB, Cardin AL, Racine CL, Lauderback CM, Butterfield DA (2001) Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 39:141–149. doi:10.1016/S0197-0186(01)00012-2

    Article  PubMed  CAS  Google Scholar 

  56. Springer JE, Azbill RD, Mark RJ, Begley JG, Waeg G, Mattson MP (1997) 4-Hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem 68:2469–2476

    Article  PubMed  CAS  Google Scholar 

  57. Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21:53–57. doi:10.1016/S0166-2236(97)01188-0

    Article  PubMed  CAS  Google Scholar 

  58. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  59. Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, Uchida K, Waeg G, Mattson MP (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696. doi:10.1016/S0306-4522(97)00065-1

    Article  PubMed  CAS  Google Scholar 

  60. Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46:607–636. doi:10.1016/0301-0082(95)00016-O

    Article  PubMed  CAS  Google Scholar 

  61. Juurlink BH (1999) Management of oxidative stress in the CNS: the many roles of glutathione. Neurotox Res 1:119–140. doi:10.1007/BF03033276

    Article  PubMed  CAS  Google Scholar 

  62. Warner DS, Sheng H, Batinić-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207:3221–3231. doi:10.1242/jeb.01022

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant of the Government of the Republic of Serbia (Grant No. 143027) and grant of Military Medical Academy, Belgrade (VMA/06-10/B.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Radenovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selakovic, V., Janac, B. & Radenovic, L. MK-801 effect on regional cerebral oxidative stress rate induced by different duration of global ischemia in gerbils. Mol Cell Biochem 342, 35–50 (2010). https://doi.org/10.1007/s11010-010-0466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0466-x

Keywords

Navigation