Skip to main content
Log in

Bioinformatic and biochemical studies point to AAGR-1 as the ortholog of human acid α-glucosidase in Caenorhabditis elegans

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human acid α-glucosidase (GAA, EC 3.2.1.20) is a lysosomal enzyme that belongs to the glycoside hydrolase family 31 (GH31) and catalyses the hydrolysis of α-1,4- and α-1,6-glucosidic linkages at acid pH. Hereditary deficiency of GAA results in lysosomal glycogen storage disease type II (GSDII, Pompe disease). The aim of this study was to assess GH31 proteins in Caenorhabditis elegans (C. elegans) to identify the ortholog of human GAA. Bioinformatic searches for GAA ortholog in C. elegans genome revealed four acid alpha-glucosidase-related (aagr-14) genes. Multiple sequence alignment of AAGRs with other GH31 proteins demonstrated their evolutionary conservation. Phylogenetic analyses suggested clustering of AAGR-1 and -2 with acid-active and AAGR-3 and -4 with neutral-active GH31 enzymes. In order to prove the AAGRs’ predicted α-glucosidase activity, we performed RNA interference of all four aagr genes. The impact on the α-glucosidase activity was evaluated at pH 4.0 (acid) and pH 6.5 (neutral), with or without the inhibitor acarbose. AAGR-1 and -2 expressed acidic α-glucosidase activity; on the contrary, AAGR-3 not -4 represented the predominant neutral α-glucosidase activity in C. elegans. Similar results were obtained in each of aagr-1 and -4 deletion mutants. Moreover, based on our structural models of AAGRs and these biochemical experiments, we hypothesize that the enzymatic sensitivity of AAGR-2 and human maltase-glucoamylase to the inhibitor acarbose is associated with a tyrosine residue in the GH31 active site, whereas acarbose resistance of AAGR-1 and human GAA is associated with the corresponding tryptophane in the active site. Acid-active AAGR-1 may thus represent the ortholog of human GAA in C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirschhorn R, Reuser AJJ (2001) Glycogen storage disease type II: acid α-glucosidase (acid maltase) deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic & molecular bases of inherited disease, 8th edn. The McGraw-Hill Companies, Inc., New York, pp 3389–3420

    Google Scholar 

  2. Carbohydrate-Active Enzymes Server, http://www.cazy.org

  3. Protein Families Database of Alignments and HMMs, http://www.sanger.ac.uk/cgi-bin/Pfam/

  4. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309–316

    CAS  PubMed  Google Scholar 

  5. Janecek S, Svensson B, MacGregor EA (2007) A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Lett 581:1261–1268. doi:10.1016/j.febslet.2007.02.036

    Article  CAS  PubMed  Google Scholar 

  6. Hermans MM, Kroos MA, van Beeumen J, Oostra BA, Reuser AJ (1991) Human lysosomal alpha-glucosidase. Characterization of the catalytic site. J Biol Chem 266:13507–13512

    CAS  PubMed  Google Scholar 

  7. Kimura A, Somoto A, Mori H, Sakai O, Matsui H, Chiba S (1997) Identification of essential ionizable groups in active site of Aspergillus niger alpha-glucosidase. Biosci Biotechnol Biochem 61:475–479

    Article  CAS  PubMed  Google Scholar 

  8. Lee SS, He S, Withers SG (2001) Identification of the catalytic nucleophile of the Family 31 alpha-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl-enzyme intermediate. Biochem J 359:381–386

    Article  CAS  PubMed  Google Scholar 

  9. Okuyama M, Okuno A, Shimizu N, Mori H, Kimura A, Chiba S (2001) Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of alpha-glucosidase from Schizosaccharomyces pombe. Eur J Biochem 268:2270–2280

    Article  CAS  PubMed  Google Scholar 

  10. Ernst HA, Lo Leggio L, Willemoes M, Leonard G, Blum P, Larsen S (2006) Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 358:1106–1124. doi:10.1016/j.jmb.2006.02.056

    Article  CAS  PubMed  Google Scholar 

  11. Naumov DG (2007) Structure and evolution of mammalian maltase-glucoamylase and sucrase-isomaltase genes. Mol Biol (Mosk) 41:1056–1068

    CAS  Google Scholar 

  12. Nichols BL, Avery S, Sen P, Swallow DM, Hahn D, Sterchi E (2003) The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci USA 100:1432–1437. doi:10.1073/pnas.0237170100

    Article  CAS  PubMed  Google Scholar 

  13. Lovering AL, Lee SS, Kim YW, Withers SG, Strynadka NC (2005) Mechanistic and structural analysis of a family 31 alpha-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem 280:2105–2115. doi:10.1074/jbc.M410468200

    Article  CAS  PubMed  Google Scholar 

  14. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR (2008) Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375:782–792. doi:10.1016/j.jmb.2007.10.069

    Article  CAS  PubMed  Google Scholar 

  15. Okumiya T, Keulemans JL, Kroos MA, Van der Beek NM, Boer MA, Takeuchi H, Van Diggelen OP, Reuser AJ (2006) A new diagnostic assay for glycogen storage disease type II in mixed leukocytes. Mol Genet Metab 88:22–28. doi:10.1016/j.ymgme.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  16. van Diggelen OP, Oemardien LF, van der Beek NA, Kroos MA, Wind HK, Voznyi YV, Burke D, Jackson M, Winchester BG, Reuser AJ (2009) Enzyme analysis for Pompe disease in leukocytes; superior results with natural substrate compared with artificial substrates. J Inherit Metab Dis 32:416–423. doi:10.1007/s10545-009-1082-3

    Article  PubMed  CAS  Google Scholar 

  17. Winchester B, Bali D, Bodamer OA, Caillaud C, Christensen E, Cooper A, Cupler E, Deschauer M, Fumic K, Jackson M, Kishnani P, Lacerda L, Ledvinova J, Lugowska A, Lukacs Z, Maire I, Mandel H, Mengel E, Muller-Felber W, Piraud M, Reuser A, Rupar T, Sinigerska I, Szlago M, Verheijen F, van Diggelen OP, Wuyts B, Zakharova E, Keutzer J (2008) Methods for a prompt and reliable laboratory diagnosis of Pompe disease: report from an international consensus meeting. Mol Genet Metab 93:275–281. doi:10.1016/j.ymgme.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  18. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018

  19. de Voer G, Peters D, Taschner PE (2008) Caenorhabditis elegans as a model for lysosomal storage disorders. Biochim Biophys Acta 1782:433–446

    PubMed  Google Scholar 

  20. Hanover JA, Forsythe ME, Hennessey PT, Brodigan TM, Love DC, Ashwell G, Krause M (2005) A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc Natl Acad Sci USA 102:11266–11271. doi:10.1073/pnas.0408771102

    Article  CAS  PubMed  Google Scholar 

  21. Holt SJ, Riddle DL (2003) SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva. Mech Ageing Dev 124:779–800

    Article  CAS  PubMed  Google Scholar 

  22. C. elegans Gene Knock-out Consortium, http://www.celeganskoconsortium.omrf.org/default.aspx

  23. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  Google Scholar 

  24. Caenorhabditis Genetics Center, http://biosci.umn.edu/CGC/CGChomepage.htm

  25. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi:10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  26. Wormbase, http://www.wormbase.org/

  27. Wormbase BLAST or BLAT Search, http://www.wormbase.org/db/searches/blat

  28. GenBank, http://www.ncbi.nlm.nih.gov/Genbank/index.html

  29. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1006/abio.1987.9999

    Article  CAS  PubMed  Google Scholar 

  30. The C. elegans ORFeome Cloning Project, http://worfdb.dfci.harvard.edu/

  31. SignalP 3.0 Server, http://www.cbs.dtu.dk/services/SignalP/

  32. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971 1750–2799 (Electronic)

    Article  CAS  PubMed  Google Scholar 

  33. Swiss-Prot/TrEMBL Database, http://www.expasy.org/sprot/

  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  35. Felsenstein J (1988) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  36. Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  37. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  38. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  39. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383. doi:10.1093/nar/gkm216

    Article  PubMed  Google Scholar 

  40. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  41. Ahringer J (2006) Reverse genetics. In: The C. elegans Research Community (eds) Wormbook. http://www.wormbook.org/. doi: 10.1895/wormbook.1.7.1

  42. Hodgkin J (1999) Conventional genetics. In: Hope IA (ed) C. elegans: a practical approach. Oxford University Press, Oxford, pp 245–269

    Google Scholar 

  43. Blumenthal T, Gleason KS (2003) Caenorhabditis elegans operons: form and function. Nat Rev Genet 4:112–120. doi:10.1038/nrg995

    Article  CAS  PubMed  Google Scholar 

  44. Hwang HY, Horvitz HR (2002) The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci USA 99:14218–14223. doi:10.1073/pnas.172522199

    Article  CAS  PubMed  Google Scholar 

  45. Hujova J, Sikora J, Dobrovolny R, Poupetova H, Ledvinova J, Kostrouchova M, Hrebicek M (2005) Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate alpha-galactosidase and alpha-N-acetylgalactosaminidase. BMC Cell Biol 6:5. doi:10.1186/1471-2121-6-5

    Article  PubMed  CAS  Google Scholar 

  46. Meikle PJ, Brooks DA, Ravenscroft EM, Yan M, Williams RE, Jaunzems AE, Chataway TK, Karageorgos LE, Davey RC, Boulter CD, Carlsson SR, Hopwood JJ (1997) Diagnosis of lysosomal storage disorders: evaluation of lysosome-associated membrane protein LAMP-1 as a diagnostic marker. Clin Chem 43:1325–1335

    CAS  PubMed  Google Scholar 

  47. Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524. doi:10.1016/j.tig.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  48. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2000) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2

  49. Kroos M, Pomponio RJ, van Vliet L, Palmer RE, Phipps M, Van der Helm R, Halley D, Reuser A (2008) Update of the Pompe disease mutation database with 107 sequence variants and a format for severity rating. Hum Mutat 29:E13–26. doi:10.1002/humu.20745

    Article  PubMed  Google Scholar 

  50. Majer F, Pavlickova L, Majer P, Hradilek M, Dolejsi E, Hruskova-Heidingsfeldova O, Pichova I (2006) Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling. Biol Chem 387:1247–1254 (1431–6730)

    Article  CAS  PubMed  Google Scholar 

  51. Rempel BP, Withers SG (2008) Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 18:570–586. doi:10.1093/glycob/cwn041

    Article  CAS  PubMed  Google Scholar 

  52. Nasi R, Sim L, Rose DR, Pinto BM (2007) New chain-extended analogues of salacinol and blintol and their glycosidase inhibitory activities. Mapping the active-site requirements of human maltase glucoamylase. J Org Chem 72:180–186. doi:10.1021/jo061944v

    Article  CAS  PubMed  Google Scholar 

  53. Conzelmann E, Sandhoff K (1983) Partial enzyme deficiencies: residual activities and the development of neurological disorders. Dev Neurosci 6:58–71

    Article  PubMed  Google Scholar 

  54. Loonen MC, Schram AW, Koster JF, Niermeijer MF, Busch HF, Martin JJ, Brouwer-Kelder B, Mekes W, Slee RG, Tager JM (1981) Identification of heterozygotes for glycogenosis 2 (acid maltase deficiency). Clin Genet 19:55–63

    Article  CAS  PubMed  Google Scholar 

  55. Konishi Y, Okawa Y, Hosokawa S, Fujimori K, Fuwa H (1990) Lysosomal glycogen accumulation in rat liver and its in vivo kinetics after a single intraperitoneal injection of acarbose, an alpha-glucosidase inhibitor. J Biochem 107:197–201

    CAS  PubMed  Google Scholar 

  56. DeLano WL (2006) Pymol. In: DeLano Scientific LLC

Download references

Acknowledgements

The authors would like to thank Dr. Karel Jelinek (Mathematical and Statistical Projects, Prague, Czech Republic) for initial homology modelling of AAGRs on the basis of YicI template. We would also like to thank Eliska Machalova for technical assistance. This study was funded by the research project 0021620806 from the Ministry of Education, Youth and Sports of the Czech Republic and, in part, by the grant 304/08/0970 from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jakub Sikora or Martin Hřebíček.

Additional information

The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikora, J., Uřinovská, J., Majer, F. et al. Bioinformatic and biochemical studies point to AAGR-1 as the ortholog of human acid α-glucosidase in Caenorhabditis elegans . Mol Cell Biochem 341, 51–63 (2010). https://doi.org/10.1007/s11010-010-0436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0436-3

Keywords

Navigation