Skip to main content

Trends in advanced glycation end products research in diabetes mellitus and its complications

Abstract

Advanced glycation end-products (AGEs) are heterogeneous groups of compounds that result from the non-enzymatic reaction of reducing sugars with free amino groups of biological molecules such as proteins, lipids, and nucleic acids. A large number of studies have been focused on AGEs metabolism, analysis, treatments, and their implications in the pathogenesis of diseases, especially in diabetes mellitus. Here, we review recent advances in the understanding of pathological complications caused by the production of AGEs. We provide an overview of the most important issues published within this area in last years; we also present the number of scientific papers related to AGEs available since 1950 until 2008 in the most important fields including metabolism, physiology, and pharmacology, thus as analytical methods for AGE detection and quantification and studies carried out in human body fluids. Data were collected from ovidSP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Kusunoki H, Miyata S, Ohara T et al (2003) Relation between serum 3-deoxyglucosone and development of diabetic microangiopathy. Diabetes Care 26:1889–1894

    Article  CAS  PubMed  Google Scholar 

  2. Chaikoff IL, Lachman GS (1933) Occurrence of cataracts in experimental pancreatic diabetes. Proc Soc Exp Biol Med 31:237–241

    Google Scholar 

  3. Colaco C (1997) Glycation and advanced glycation endproducts. In: The glycation hypothesis of atherosclerosis. Chapman & Hall, Austin, pp 57–61

  4. Ronca G, Chiti R, Lucacchini A (1970) Separation of epsilon-carboxymethyl-lysine from methionine on 60-cm columns of ion-exchange resins. J Chromatogr 47:114–115

    Article  CAS  PubMed  Google Scholar 

  5. Nakayama T, Hayase F, Kato H (1980) Formation of e-(2-formyl-5-hydroxy-methyl-pyrrol-1-yl)-l-norleucine in the Maillard Reaction between d-glucose and l-lysine. Agric Biol Chem 44:1201–1202

    CAS  Google Scholar 

  6. Njore G, Fernandes A, Monnier VM (1998) Mechanism of formation of putative advanced glycosylation and product and protein cross-link 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazolone. J Biol Chem 263:10646–10652

    Google Scholar 

  7. Biemel K, Reihl O, Conrad J et al (2001) Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes: unraveling the structure of a pentosidine precursor. J Biol Chem 276:23405–23412

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura K, Nakazawa Y, Ienaga K (1997) Acid-stable fluorescent advanced glycation end products: vesperlysine A, B and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose. Biochem Biophys Res Commun 232:227–230

    Article  CAS  PubMed  Google Scholar 

  9. Biemel K, Friedl D, Lederer M (2002) Identification and quantification of major Maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J Biol Chem 277:24907–24915

    Article  CAS  PubMed  Google Scholar 

  10. Horie K, Miyata T, Yasuda T et al (1997) Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem Biophys Res Commun 236:327–332

    Article  CAS  PubMed  Google Scholar 

  11. Rietbrock J (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53:131–142

    PubMed  Google Scholar 

  12. Cooper ME (2004) Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am J Hypertens 17:31S–38S

    Article  CAS  PubMed  Google Scholar 

  13. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt AM, Yan SD, Yan SF et al (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498:99–111

    Article  CAS  PubMed  Google Scholar 

  15. Yeh CH, Sturgis L, Haidacher J et al (2001) Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50:1495–1504

    Article  CAS  PubMed  Google Scholar 

  16. Schwedler S, Schinzel R, Vaith P et al (2001) Inflammation and advanced glycation end products in uremia: simple coexistence, potentiation or causal relationship? Kidney Int 59:S32–S36

    Article  Google Scholar 

  17. Lin L, Park S, Lakatta EG (2009) RAGE signaling in inflammation and arterial aging. Front Biosci 14:1403–1413

    Article  CAS  PubMed  Google Scholar 

  18. Vlassara H, Brownlee M, Manogue K et al (1988) Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 240:1546–1548

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Lin JX, Vilcek J (1990) Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol 10:3818–3823

    CAS  PubMed  Google Scholar 

  20. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1320

    CAS  PubMed  Article  Google Scholar 

  21. Soulis T, Thallas V, Youssef S et al (1997) Advanced glycation end products and their receptors co-localise in rat organs susceptible to diabetic microvascular injury. Diabetologia 40:619–628

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka N, Yonekura H, Yamagishi S et al (2000) The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor through nuclear factor-κB, and by 17beta-estradiol through Sp1 in human vascular endothelial cells. J Biol Chem 275:25781–25790

    Article  CAS  PubMed  Google Scholar 

  23. Barile G, Pachydaki S, Tari SR et al (2005) The RAGE axis in early diabetic retinopathy. Invest Ophthalmol 46:2916–2924

    Article  Google Scholar 

  24. Li YM, Mitsuhashi T, Wojciechowicz D et al (1996) Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci USA 93:11047–11052

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki A, Nakamura H, Horiuchi S (2002) Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc Med 12:258–262

    Article  CAS  PubMed  Google Scholar 

  26. Ohgami N, Nagai R, Ikemoto M et al (2002) CD36 serves as a receptor for AGEs. J Diabetes Complicat 16:56–59

    Article  PubMed  Google Scholar 

  27. Bierhaus A, Humpert PM, Morcos M et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Article  CAS  PubMed  Google Scholar 

  28. Mene P, Festuccia F, Pugliese F (2003) Clinical potential of advanced glycation end-product inhibitors in diabetes mellitus. Am J Cardiovasc Drugs 3:315–320

    Article  CAS  PubMed  Google Scholar 

  29. Giannoukakis N (2005) Pyridoxamine (BioStratum). Curr Opin Investig Drugs 6:410–418

    CAS  PubMed  Google Scholar 

  30. Khalifah RG, Baynes JW, Hudson BG (1999) Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun 257:251–258

    Article  CAS  PubMed  Google Scholar 

  31. Vaitkevicius PV, Lane M, Spurgeon H et al (2001) A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc Natl Acad Sci USA 98:1171–1175

    Article  CAS  PubMed  Google Scholar 

  32. Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN et al (1998) Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci USA 95:4630–4634

    Article  CAS  PubMed  Google Scholar 

  33. Kass DA, Shapiro EP, Kawaguchi M et al (2001) Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation 104:1464–1470

    Article  CAS  PubMed  Google Scholar 

  34. Dan Q, Wong R, Chung SK et al (2004) Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci 76:445–459

    Article  CAS  PubMed  Google Scholar 

  35. Beyer-Mears A, Mistry K, Diecke FP et al (1996) Zopolrestat prevention of proteinuria, albuminuria and cataractogenesis in diabetes mellitus. Pharmacology 52:292–302

    Article  CAS  PubMed  Google Scholar 

  36. Yamagishi S, Matsui T, Nakamura K et al (2005) Minodronate, a nitrogen-containing bisphosphonate, inhibits advanced glycation end product-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation. Int J Tissue React 27:189–195

    CAS  PubMed  Google Scholar 

  37. Duraisamy Y, Gaffney J, Slevin M et al (2003) Aminosalicylic acid reduces the antiproliferative effect of hyperglycaemia, advanced glycation endproducts and glycated basic fibroblast growth factor in cultured bovine aortic endothelial cells: comparison with aminoguanidine. Mol Cell Biochem 246:143–153

    Article  CAS  PubMed  Google Scholar 

  38. Méndez JD, Leal LI (2004) Inhibition of in vitro pyrraline formation by l-arginine and polyamines. Biomed Pharmacother 58:598–604

    Article  PubMed  CAS  Google Scholar 

  39. Méndez JD, Xie J, García-Pérez E (2007) Urea inhibits the in vitro formation of fluorescent advanced glycation end products. World Appl Sci J 2:90–98

    Google Scholar 

  40. Thomas MC, Baynes JW, Thorpe SR et al (2005) The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets 6:453–474

    Article  CAS  PubMed  Google Scholar 

  41. Ruiz-Ortega M, Lorenzo O, Ruperez M et al (2000) ACE inhibitors and AT(1) receptor antagonists-beyond the haemodynamic effect. Nephrol Dial Transpl 15:561–565

    Article  CAS  Google Scholar 

  42. Wolf G, Neilson EG (1993) Angiotensin II as a renal growth factor. J Am Soc Nephrol 3:1531–1540

    CAS  PubMed  Google Scholar 

  43. Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    Article  CAS  PubMed  Google Scholar 

  44. Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355:253–259

    Google Scholar 

  45. Forbes JM, Cooper ME, Thallas V et al (2002) Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes 51:3274–3282

    Article  CAS  PubMed  Google Scholar 

  46. Goldin A, Beckman JA, Schmidt AM et al (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  CAS  PubMed  Google Scholar 

  47. Yamagishi S, Nakamura K, Matsui T et al (2006) Cardiovascular disease in diabetes. Mini-Rev Org Chem 6:313–318

    CAS  Google Scholar 

  48. Kaneko M, Bucciarelli L, Hwang YC et al (2005) Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann N Y Acad Sci 1043:702–719

    Article  CAS  PubMed  Google Scholar 

  49. Yamagishi S, Inagaki Y, Okamoto T et al (2002) Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem 277:20309–20315

    Article  CAS  PubMed  Google Scholar 

  50. Dworkin LD, Ichikawa I, Brenner BM et al (1983) Hormonal modulation of glomerular function. Am J Physiol 244:F95–F104

    CAS  PubMed  Google Scholar 

  51. Silbiger S, Crowley S, Shan Z et al (1993) Nonenzymatic elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 43:853–864

    Article  CAS  PubMed  Google Scholar 

  52. Brownlee M (1994) Glycation and diabetic complications. Diabetes 43:836–841

    CAS  PubMed  Google Scholar 

  53. Yamagishi S, Takeuchi M, Makita Z (2001) Advanced glycation end products and the pathogenesis of diabetic nephropathy. In: Tomino Y (ed) Type-2 diabetic nephropathy in Japan. From bench to bedside. Contrib Nephrol 134:30–35

  54. Yamagishi S, Inagaki Y, Okamoto T et al (2003) Advanced glycation end products inhibit de novo protein synthesis and induce TGF-beta overexpression in proximal tubular cells. Kidney Int 63:464–473

    Article  CAS  PubMed  Google Scholar 

  55. Sharma K, Ziyadeh FN (1995) Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 44:1139–1146

    Article  CAS  PubMed  Google Scholar 

  56. Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmo 66:366–378

    CAS  Google Scholar 

  57. Mandarino LJ (1992) Current hypotheses for the biochemical basis of diabetic retinopathy. Diabetes Care 15:1892–1901

    Article  CAS  PubMed  Google Scholar 

  58. Frank RN (1990) On the pathogenesis of diabetic retinopathy. A 1990 update. Ophthalmology 98:586–593

    Google Scholar 

  59. Herman IM, D’Amore PA (1985) Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol 101:43–52

    Article  CAS  PubMed  Google Scholar 

  60. Joyce NC, Haire MF, Palade GE (1985) Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol 100:1387–1395

    Article  CAS  PubMed  Google Scholar 

  61. Yamagishi S, Hsu CC, Taniguchi M et al (1995) Receptor-mediated toxicity to pericytes of advanced glycosylation end products: a possible mechanism of pericyte loss in diabetic microangiopathy. Biochem Biophys Res Commun 213:681–687

    Article  CAS  PubMed  Google Scholar 

  62. Yamagishi S, Amano S, Inagaki Y et al (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 290:973–978

    Article  CAS  PubMed  Google Scholar 

  63. Moore CR, Wang R (2006) Pathophysiology and treatment of diabetic erectile dysfunction. Asian J Androl 8:675–684

    Article  PubMed  Google Scholar 

  64. Andersson KE, Wagner G (1995) Physiology of penile erection. Physiol Rev 75:191–236

    CAS  PubMed  Google Scholar 

  65. Giuliano F, Rampin O (2000) Central control of erection and its pharmacological modification. Curr Opin Urol 10:629–633

    Article  CAS  PubMed  Google Scholar 

  66. Melis MR, Argiolas A (1997) Role of central nitric oxide in the control of penile erection and yawning. Prog Neuro-Psychopharmacol Biol Psychiatry 21:899–922

    Article  CAS  Google Scholar 

  67. Sell DR, Monnier VM (1989) Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 264:21597–21602

    CAS  PubMed  Google Scholar 

  68. Nagaraj RH, Shipanova IN, Faust FM (1996) Protein cross-linking by the Maillard reaction. J Biol Chem 271:19338–19345

    Article  CAS  PubMed  Google Scholar 

  69. Kalousova M, Zima T, Malbohan IM et al (2002) Determination of advanced glycation end products. Sb Lek 103:427–434

    CAS  PubMed  Google Scholar 

  70. Amanoa S, Kajia Y, Oshikaa T et al (2001) Advanced glycation end products in human optic nerve head. Br J Ophthalmol 85:52–55

    Article  Google Scholar 

  71. Sasaki N, Fukatsu R, Tsuzuki K et al (1998) Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol 153:1149–1155

    CAS  PubMed  Google Scholar 

  72. Petrovic R, Futas J, Chandoga J et al (2005) Rapid and simple method for determination of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine in urine using gas chromatography/mass spectrometry. Biomed Chromatogr 19:649–654

    Article  CAS  PubMed  Google Scholar 

  73. Ahmed N, Babaei-Jadidi R, Howell SK et al (2005) Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 48:1590–1603

    Article  CAS  PubMed  Google Scholar 

  74. Thornalley PJ (2005) Measurement of protein glycation, glycated peptides, and glycation free adducts. Perit Dial Int 25:522–533

    CAS  PubMed  Google Scholar 

  75. Kislinger T, Humeny A, Peich CC et al (2005) Analysis of protein glycation products by MALDI-TOF/MS. Ann N Y Acad Sci 1043:249–259

    Article  CAS  PubMed  Google Scholar 

  76. Shimada S, Tanaka Y, Ohmura C et al (2005) N-(carboxymethyl)valine residues in hemoglobin (CMV-Hb) reflect accumulation of oxidative stress in diabetic patients. Diabetes Res Clin Pract 69:272–278

    Article  CAS  PubMed  Google Scholar 

  77. Schalkwijk CG, Wee PM, Stehouwer CD (2005) Plasma levels of AGE peptides in type 1 diabetic patients are associated with serum creatinine and not with albumin excretion rate : Possible role of AGE peptide-associated endothelial dysfunction. Ann N Y Acad Sci 1043:662–670

    Article  CAS  PubMed  Google Scholar 

  78. Nagai R, Deemer EK, Brock JW et al (2005) Effect of glucose concentration on formation of AGEs in erythrocytes in vitro. Ann N Y Acad Sci 1043:146–150

    Article  CAS  PubMed  Google Scholar 

  79. Yamagishi S, Nakamura K, Inoue H et al (2005) Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer’s disease. Med Hypotheses 64:1205–1207

    Article  CAS  PubMed  Google Scholar 

  80. Konings CJ, Schalkwijk CG, van der Sande FM et al (2005) Influence of icodextrin on plasma and dialysate levels of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine. Perit Dial Int 25:591–595

    CAS  PubMed  Google Scholar 

  81. Peppa M, Brem H, Cai W et al (2006) Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711). Am J Nephrol 26:430–436

    Article  CAS  PubMed  Google Scholar 

  82. Bunn HF, Gabbay KH, Gallop PM (1978) The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200:21–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Méndez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Méndez, J.D., Xie, J., Aguilar-Hernández, M. et al. Trends in advanced glycation end products research in diabetes mellitus and its complications. Mol Cell Biochem 341, 33–41 (2010). https://doi.org/10.1007/s11010-010-0434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0434-5

Keywords

  • Advanced glycation end products
  • Hyperglycemia
  • Diabetes mellitus
  • Diabetic complications