Skip to main content
Log in

Inhibition of AMP-activated protein kinase pathway sensitizes human leukemia K562 cells to nontoxic concentration of doxorubicin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Doxorubicin (Dox) is a commonly used anthracycline in many antitumor regimens. The dose related Dox-induced cardiotoxicity often poses challenge in clinical practice, lowering its dose and administering it in combination with other compound is an option. In this study, we found that a nontoxic concentration of Dox at 34.5 nM (20 ng/ml) combined with Compound C, an inhibitor used in AMP-activated protein kinase (AMPK) pathway, could kill human leukemia K562 cells. Additionally, this study confirmed that the combined effect was related to the inhibition of some key proteins such as AMPK and acetyl CoA carboxylase. Moreover, down-regulation of these key proteins in AMPK pathway using siRNA technology also sensitized K562 cells to nontoxic concentration of Dox. The study also showed that Dox at a concentration of 345.0 nM (200 ng/ml) or 862.0 nM (500 ng/ml) that is lower than a typical value of 1–2 μM Dox in patients could kill human leukemia K562 cells. Taken together, our results suggest that inhibition of AMPK pathway by Compound C or siRNA sensitizes K562 cells to nontoxic concentration of Dox which is much lower than typical concentration in plasma of clinical patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

ACC:

Acetyl CoA carboxylase

FBS:

Fetal bovine serum

Dox:

Doxorubicin

MTT:

Thiazolyl blue tetrazolium bromide

References

  1. Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19:670–686

    CAS  PubMed  Google Scholar 

  2. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  PubMed  Google Scholar 

  3. Czyz M, Jakubowska J, Sztiller-Sikorska M (2008) STI571/doxorubicin concentration-dependent switch for diverse caspase actions in CML cell line K562. Biochem Pharmacol 75:1761–1773

    Article  CAS  PubMed  Google Scholar 

  4. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  CAS  PubMed  Google Scholar 

  5. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  6. Kim HS, Hwang JT, Yun H, Chi SG, Lee SJ, Kang I, Yoon KS, Choe WJ, Kim SS, Ha J (2008) Inhibition of AMP-activated protein kinase sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction of p53. J Biol Chem 283:3731–3742

    Article  CAS  PubMed  Google Scholar 

  7. Tokarska-Schlattner M, Zaugg M, da Silva R, Lucchinetti E, Schaub MC, Wallimann T, Schlattner U (2005) Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol 289:H37–H47

    Article  CAS  PubMed  Google Scholar 

  8. Shaw MM, Gurr WK, McCrimmon RJ, Schorderet DF, Sherwin RS (2007) 5′AMP-activated protein kinase alpha deficiency enhances stress-induced apoptosis in BHK and PC12 cells. J Cell Mol Med 11:286–298

    Article  CAS  PubMed  Google Scholar 

  9. Niesler CU, Myburgh KH, Moore F (2007) The changing AMPK expression profile in differentiating mouse skeletal muscle myoblast cells helps confer increasing resistance to apoptosis. Exp Physiol 92:207–217

    Article  CAS  PubMed  Google Scholar 

  10. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    CAS  PubMed  Google Scholar 

  11. Jin J, Mullen TD, Hou Q, Bielawski J, Bielawska A, Zhang X, Obeid LM, Hannun YA, Hsu YT (2009) AMPK inhibitor compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells. J Lipid Res 50:2389–2397

    Article  CAS  PubMed  Google Scholar 

  12. Rossi MJ, Sundararaj K, Koybasi S, Phillips MS, Szulc ZM, Bielawska A, Day TA, Obeid LM, Hannun YA, Ogretmen B (2005) Inhibition of growth and telomerase activity by novel cationic ceramide analogs with high solubility in human head and neck squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132:55–62

    Article  PubMed  Google Scholar 

  13. Zeidan YH, Pettus BJ, Elojeimy S, Taha T, Obeid LM, Kawamori T, Norris JS, Hannun YA (2006) Acid ceramidase but not acid sphingomyelinase is required for tumor necrosis factor-{alpha}-induced PGE2 production. J Biol Chem 281:24695–24703

    Article  CAS  PubMed  Google Scholar 

  14. Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    CAS  PubMed  Google Scholar 

  15. Emerling BM, Viollet B, Tormos KV, Chandel NS (2007) Compound C inhibits hypoxic activation of HIF-1 independent of AMPK. FEBS Lett 581:5727–5731

    Article  CAS  PubMed  Google Scholar 

  16. Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574:63–71

    Article  CAS  PubMed  Google Scholar 

  17. Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26:69–76

    Article  CAS  PubMed  Google Scholar 

  18. Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M, Esumi H (2002) Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 21:6082–6090

    Article  CAS  PubMed  Google Scholar 

  19. Kayampilly PP, Menon KM (2009) Follicle-stimulating hormone inhibits adenosine 5′-monophosphate-activated protein kinase activation and promotes cell proliferation of primary granulosa cells in culture through an Akt-dependent pathway. Endocrinology 150:929–935

    Article  CAS  PubMed  Google Scholar 

  20. Hardie DG, Carling D (1997) The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  CAS  PubMed  Google Scholar 

  21. Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24:22–25

    Article  CAS  PubMed  Google Scholar 

  22. Munday MR (2002) Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 30:1059–1064

    Article  CAS  PubMed  Google Scholar 

  23. Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30:1064–1070

    Article  CAS  PubMed  Google Scholar 

  24. Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344

    Article  CAS  PubMed  Google Scholar 

  25. Hasinoff BB, Patel D, O’Hara KA (2008) Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol 74:1722–1728

    Article  CAS  PubMed  Google Scholar 

  26. Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4:3076–3086

    CAS  PubMed  Google Scholar 

  27. Sokolove PM (1994) Interactions of adriamycin aglycones with mitochondria may mediate adriamycin cardiotoxicity. Int J Biochem 26:1341–1350

    Article  CAS  PubMed  Google Scholar 

  28. Fang G, Kim CN, Perkins CL, Ramadevi N, Winton E, Wittmann S, Bhalla KN (2000) CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 96:2246–2253

    CAS  PubMed  Google Scholar 

  29. Jakubowska J, Stasiak M, Szulawska A, Bednarek A, Czyz M (2007) Combined effects of doxorubicin and STI571 on growth, differentiation and apoptosis of CML cell line K562. Acta Biochim Pol 54:839–846

    CAS  PubMed  Google Scholar 

  30. Jabbour E, Cortes J, Kantarjian H (2009) Treatment selection after imatinib resistance in chronic myeloid leukemia. Target Oncol 4:3–10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Science and Technology Development Fund from Nanjing Medical University (No. 08NMUZ025) and National Natural Science Foundation of China (30971170). We thank Dr. K. Y. Williams (Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294) for carefully reading, proof-reading, and editing this manuscript for its language and content.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfei Jin or Duan-fang Liao.

Additional information

Qun Zhu and Bo Shen authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Shen, B., Zhang, B. et al. Inhibition of AMP-activated protein kinase pathway sensitizes human leukemia K562 cells to nontoxic concentration of doxorubicin. Mol Cell Biochem 340, 275–281 (2010). https://doi.org/10.1007/s11010-010-0428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0428-3

Keywords

Navigation