Skip to main content
Log in

Transient anoxia and oxyradicals induce a region-specific activation of MAPKs in the embryonic heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have previously reported in the early septating embryonic heart that electromechanical disturbances induced by anoxia-reoxygenation are distinct in atria, ventricle, and outflow tract, and are attenuated in ventricle by opening of mitochondrial KATP (mitoKATP) channels. Here, we assessed the regional activation of mitogen-activated protein kinases (MAPKs) ERK, p38, and JNK in response to anoxia-reoxygenation and H2O2. Hearts isolated from 4-day-old chick embryos were subjected to 30-min anoxia and 60-min reoxygenation or exposed to H2O2 (50 μM–1 mM). The temporal pattern of activation of ERK, p38, and JNK in atria, ventricle, and outflow tract was determined using immunoblotting and/or kinase assay. The effect of the mitoKATP channel opener diazoxide (50 μM) on JNK phosphorylation was also analyzed. Under basal conditions, total ERK and JNK were homogeneously distributed within the heart, whereas total p38 was the lowest in outflow tract. The phosphorylated/total form ratio of each MAPK was similar in all regions. Phosphorylation of ERK increased in atria and ventricle at the end of reoxygenation without change in outflow tract. Phosphorylation of p38 was augmented by anoxia in the three regions, and returned to basal level at the end of reoxygenation except in the outflow tract. JNK activity was not altered by anoxia-reoxygenation in atria and outflow tract. In ventricle, however, the diazoxide-inhibitable peak of JNK activity known to occur during reoxygenation was not accompanied by a change in phosphorylation level. H2O2 over 500 μM impaired cardiac function, phosphorylated ERK in all the regions and p38 in atria and outflow tract, but did not affect JNK phosphorylation. At a critical stage of early cardiogenesis, anoxia, reoxygenation, exogenous H2O2 and opening of mitoKATP channels can subtly modulate ERK, p38, and JNK pathways in a region-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79:635–659

    CAS  PubMed  Google Scholar 

  2. Raddatz E, Gardier S, Sarre A (2006) Physiopathology of the embryonic heart (with special emphasis on hypoxia and reoxygenation). Ann Cardiol Angeiol (Paris) 55:79–89

    Article  CAS  Google Scholar 

  3. Jensen A, Garnier Y, Berger R (1999) Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynecol Reprod Biol 84:155–172

    Article  CAS  PubMed  Google Scholar 

  4. Sharma SK, Lucitti JL, Nordman C, Tinney JP, Tobita K, Keller BB (2005) Impact of hypoxia on early chick embryo growth and cardiovascular function. Pediatr Res 59:116–120

    Article  PubMed  Google Scholar 

  5. Fowden AL, Giussani DA, Forhead AJ (2006) Intrauterine programming of physiological systems: causes and consequences. Physiology 21:29–37

    Article  CAS  PubMed  Google Scholar 

  6. Ream M, Ray AM, Chandra R, Chikaraishi DM (2008) Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol Regul Integr Comp Physiol 295:R583–R595

    CAS  PubMed  Google Scholar 

  7. Agata N, Kato Y, Tanaka H, Shigenobu K (1994) Differential effects of hypoxia on electrical and mechanical activities of isolated ventricular muscles from fetal and adult guinea-pigs. Gen Pharmacol 25:15–18

    CAS  PubMed  Google Scholar 

  8. Kasuya Y, Matsuki N, Shigenobu K (1977) Changes in sensitivity to anoxia of the cardiac action potential plateau during chick embryonic development. Dev Biol 58:124–133

    Article  CAS  PubMed  Google Scholar 

  9. Sarre A, Lange N, Kucera P, Raddatz E (2005) mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways. Am J Physiol Heart Circ Physiol 288:H1611–H1619

    Article  CAS  PubMed  Google Scholar 

  10. Sarre A, Maury P, Kucera P, Kappenberger L, Raddatz E (2006) Arrhythmogenesis in the developing heart during anoxia-reoxygenation and hypothermia-rewarming: an in vitro model. J Cardiovasc Electrophysiol 17:1350–1359

    Article  PubMed  Google Scholar 

  11. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116:1413–1423

    Article  CAS  PubMed  Google Scholar 

  13. Bogoyevitch MA (2000) Signalling via stress-activated mitogen-activated protein kinases in the cardiovascular system. Cardiovasc Res 45:826–842

    Article  CAS  PubMed  Google Scholar 

  14. Liberatore CM, Yutzey KE (2004) MAP kinase activation in avian cardiovascular development. Dev Dyn 230:773–780

    Article  CAS  PubMed  Google Scholar 

  15. Ravingerova T, Barancik M, Strniskova M (2003) Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247:127–138

    Article  CAS  PubMed  Google Scholar 

  16. Bell RM, Clark JE, Hearse DJ, Shattock MJ (2007) Reperfusion kinase phosphorylation is essential but not sufficient in the mediation of pharmacological preconditioning: characterisation in the bi-phasic profile of early and late protection. Cardiovasc Res 73:153–163

    Article  CAS  PubMed  Google Scholar 

  17. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253

    Article  CAS  PubMed  Google Scholar 

  18. Schulz R (2005) A new paradigm: cross talk of protein kinases during reperfusion saves life!. Am J Physiol Heart Circ Physiol 288:H1–H2

    Article  PubMed  Google Scholar 

  19. Tenhunen O, Soini Y, Ilves M, Rysa J, Tuukkanen J, Serpi R et al (2006) p38 kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and anti-apoptotic mechanisms. FASEB J 20:1907–1909

    Article  CAS  PubMed  Google Scholar 

  20. Sarre A, Gardier S, Maurer F, Bonny C, Raddatz E (2008) Modulation of the c-Jun N-terminal kinase activity in the embryonic heart in response to anoxia-reoxygenation: involvement of the Ca2+ and mitoKATP channels. Mol Cell Biochem 313:133–138

    Article  CAS  PubMed  Google Scholar 

  21. Romano R, Rochat AC, Kucera P, De Ribaupierre Y, Raddatz E (2001) Oxidative and glycogenolytic capacities within the developing chick heart. Pediatr Res 49:363–372

    Article  CAS  PubMed  Google Scholar 

  22. Moorman AF, Schumacher CA, de Boer PA, Hagoort J, Bezstarosti K, van den Hoff MJ et al (2000) Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. Dev Biol 223:279–290

    Article  CAS  PubMed  Google Scholar 

  23. Tenthorey D, de Ribaupierre Y, Kucera P, Raddatz E (1998) Effects of verapamil and ryanodine on activity of the embryonic chick heart during anoxia and reoxygenation. J Cardiovasc Pharmacol 31:195–202

    Article  CAS  PubMed  Google Scholar 

  24. Franco D, Gallego A, Habets PE, Sans-Coma V, Moorman AF (2002) Species-specific differences of myosin content in the developing cardiac chambers of fish, birds, and mammals. Anat Rec 268:27–37

    Article  CAS  PubMed  Google Scholar 

  25. Raddatz E, Thomas AC (2002) Heterogeneity of oxydant stress in the reoxygenated developing heart. J Mol Cell Cardiol 34:A52

    Article  Google Scholar 

  26. Maury P, Sarre A, Terrand J, Rosa A, Kucera P, Kappenberger L et al (2004) Ventricular but not atrial electro-mechanical delay of the embryonic heart is altered by anoxia-reoxygenation and improved by nitric oxide. Mol Cell Biochem 265:141–149

    Article  CAS  PubMed  Google Scholar 

  27. Shrier A, Clay JR (1982) Comparison of the pacemaker properties of chick embryonic atrial and ventricular heart cells. J Membr Biol 69:49–56

    Article  CAS  PubMed  Google Scholar 

  28. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  CAS  PubMed  Google Scholar 

  29. Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  30. Larsen CM, Wadt KA, Juhl LF, Andersen HU, Karlsen AE, Su MS et al (1998) Interleukin-1beta-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Biol Chem 273:15294–15300

    Article  CAS  PubMed  Google Scholar 

  31. Martinsen BJ (2005) Reference guide to the stages of chick heart embryology. Dev Dyn 233:1217–1237

    Article  PubMed  Google Scholar 

  32. Sugishita Y, Leifer DW, Agani F, Watanabe M, Fisher SA (2004) Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract. Dev Biol 273:285–296

    Article  CAS  PubMed  Google Scholar 

  33. Barbosky L, Lawrence DK, Karunamuni G, Wikenheiser JC, Doughman YQ, Visconti RP et al (2006) Apoptosis in the developing mouse heart. Dev Dyn 235:2592–2602

    Article  PubMed  Google Scholar 

  34. Lee K, Esselman WJ (2002) Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radic Biol Med 33:1121–1132

    Article  CAS  PubMed  Google Scholar 

  35. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142

    Article  CAS  PubMed  Google Scholar 

  36. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    CAS  PubMed  Google Scholar 

  37. Barsacchi R, Camici P, Bottigli U, Salvadori PA, Pelosi G, Maiorino M et al (1983) Correlation between hydroperoxide-induced chemiluminescence of the heart and its function. Biochim Biophys Acta 762:241–247

    Article  CAS  PubMed  Google Scholar 

  38. Sabri A, Byron KL, Samarel AM, Bell J, Lucchesi PA (1998) Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circ Res 82:1053–1062

    CAS  PubMed  Google Scholar 

  39. Nakamura TY, Goda K, Okamoto T, Kishi T, Nakamura T, Goshima K (1993) Contractile and morphological impairment of cultured fetal mouse myocytes induced by oxygen radicals and oxidants. Correlation with intracellular Ca2+ concentration. Circ Res 73:758–770

    CAS  PubMed  Google Scholar 

  40. Fisher SA (2007) The developing embryonic cardiac outflow tract is highly sensitive to oxidant stress. Dev Dyn 236:3496–3502

    Article  CAS  PubMed  Google Scholar 

  41. Knight RJ, Buxton DB (1996) Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun 218:83–88

    Article  CAS  PubMed  Google Scholar 

  42. Ruusalepp A, Czibik G, Flatebo T, Vaage J, Valen G (2007) Myocardial protection evoked by hyperoxic exposure involves signaling through nitric oxide and mitogen activated protein kinases. Basic Res Cardiol 102:318–326

    Article  CAS  PubMed  Google Scholar 

  43. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A et al (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79:162–173

    CAS  PubMed  Google Scholar 

  44. Bassi R, Heads R, Marber MS, Clark JE (2008) Targeting p38-MAPK in the ischaemic heart: kill or cure? Curr Opin Pharmacol 8:141–146

    Article  CAS  PubMed  Google Scholar 

  45. Clerk A, Sugden PH (2006) Inflame my heart (by p38-MAPK). Circ Res 99:455–458

    Article  CAS  PubMed  Google Scholar 

  46. Hoffman DL, Salter JD, Brookes PS (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 292:H101–H108

    Article  CAS  PubMed  Google Scholar 

  47. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    Article  CAS  PubMed  Google Scholar 

  48. Nihalani D, Wong HN, Holzman LB (2003) Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation. J Biol Chem 278:28694–28702

    Article  CAS  PubMed  Google Scholar 

  49. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD et al (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334

    Article  CAS  PubMed  Google Scholar 

  50. Wiltshire C, Gillespie DA, May GH (2004) Sab (SH3BP5), a novel mitochondria-localized JNK-interacting protein. Biochem Soc Trans 32:1075–1077

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The collaboration of Fabienne Maurer, Christophe Bonny, and Miguel Van Bemmelen, is gratefully acknowledged. We thank Anne-Catherine Thomas for her skillful technical assistance. This work was supported by the Swiss National Science Foundation n°3100A0-105901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephany Gardier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardier, S., Pedretti, S., Sarre, A. et al. Transient anoxia and oxyradicals induce a region-specific activation of MAPKs in the embryonic heart. Mol Cell Biochem 340, 239–247 (2010). https://doi.org/10.1007/s11010-010-0423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0423-8

Keywords

Navigation