Skip to main content
Log in

Alterations in Ca2+ homeostasis in rat erythrocytes with atrazine treatment: positive modulation by vitamin E

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A very low level of intra-erythrocytic calcium content is very important for normal physiology of cells. In the present study, our main objective was to investigate the effects of atrazine toxicity on Ca2+ homeostasis and modulation by vitamin E. Experimental animals were orally administered atrazine (300 mg kg−1 body weight, daily) and vitamin E (100 mg kg−1 body weight, daily). All studies were carried out for 7, 14, and 21 days in male Wistar rats. Erythrocyte membranes were prepared and were analyzed for lipid peroxidation (LPO) and membrane bound ATPases. Furthermore, Ca2+ homeostasis was evaluated in erythrocytes. The present findings indicated that atrazine exposure induced oxidative stress which was associated with significant increase in lipid peroxidation (P < 0.05). Vitamin E treatment on the other hand significantly lowered the atrazine-induced lipid peroxidation. The increased LPO following atrazine exposure was accompanied by significant decrease in ATPases (P < 0.05) and disturbed Ca2+ homeostasis. Furthermore, vitamin E treatment had a beneficial effect by partially restoring ATPases and Ca2+ homeostasis. The current findings suggest that atrazine exerts its toxic effect by increasing LPO, altering the activity of membrane bound enzymes and disturbing Ca2+ homeostasis. Vitamin E treatment ameliorated the toxic effects of atrazine suggesting its role as a potential antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ecobichon DJ (2001) Toxic effects of pesticides. In: Claassen CD (ed) Casarett and doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York, p 790

    Google Scholar 

  2. Worthing CR (1991) The pesticide manual, 9th edn. Farnham, British Crop Protection Council

  3. Purcell M, Neault JF, Malonga H, Arakawa H, Carpentier R, Tajmir-Riahi HA (2001) Interactions of atrazine and 2,4-D with human serum albumin studied by gel and capillary electrophoresis and FTIR spectroscopy. Biochem Biophys Acta 1548:129–138

    CAS  PubMed  Google Scholar 

  4. Singh M, Sandhir R, Kiran R (2006) Erythrocyte antioxidant enzymes in toxicological evaluation of commonly used organophosphate pesticides. Indian J Exp Biol 44:580–583

    CAS  PubMed  Google Scholar 

  5. Waring CP, Moore A (2004) The effect of atrazine on Atlantic salmon (Salmo salar) smolts in fresh water and after sea water transfer. Aquat Toxicol 66:93–104

    Article  CAS  PubMed  Google Scholar 

  6. Alavanja MC, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197

    Article  PubMed  Google Scholar 

  7. McCauley LA, Anger WK, Keifer M, Langley R, Robson MG, Rohlman D (2006) Studying health outcomes in farm worker populations exposed to pesticides. Environ Health Perspect 114:953–960

    Article  CAS  PubMed  Google Scholar 

  8. Singh M, Kaur P, Sandhir R, Kiran R (2008) Protective effects of vitamin E against atrazine-induced genotoxicity in rats. Mutat Res 654:145–149

    CAS  PubMed  Google Scholar 

  9. Singh M, Sandhir R, Kiran R (2008) Atrazine induced alterations in rat erythrocyte membranes: ameliorating effect of vitamin E. J Biochem Mol Toxicol 22:363–369

    Article  CAS  PubMed  Google Scholar 

  10. Kumar SS, Sikka HC, Saxena J, Zweig G (1975) Membrane damage in human erythrocyte caused by Captan and Captafol. Pest Biochem Physiol 5:338–347

    Article  CAS  Google Scholar 

  11. Eaton JW, Skelton TD, Swofford HS, Kopkin CE, Jacob HS (1973) Elevated erythrocyte calcium in sickle cell disease. Nature 246:105–106

    Article  CAS  PubMed  Google Scholar 

  12. Schatzmann HJ, Vincenzi FF (1969) Calcium movements across the membrane of human red cells. J Physiol 201:369–395

    CAS  PubMed  Google Scholar 

  13. Avkiran M, Marber MS (2002) Na+/H+ exchange inhibitors for cardioprotective therapy: progress, problems and prospects. J Am Coll Cardiol 39:747–753

    Article  CAS  PubMed  Google Scholar 

  14. Raccah D, Gallice P, Pouget J, Vague P (1992) Hypothesis: low ATPase activity in the red cell membrane, a potential marker of the predisposition of diabetic neuropathy. Diabetes Metab 18:236–241

    CAS  Google Scholar 

  15. Giugliano D, Ceriollo A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267

    Article  CAS  PubMed  Google Scholar 

  16. Rai DK, Rai PK, Rizvi SI, Watal G, Sharma B (2009) Carbofuran-induced toxicity in rats: protective role of vitamin C. Exp Toxicol Pathol 61:531–535

    Article  CAS  PubMed  Google Scholar 

  17. Siddidue YH, Begm T, Afzal M (2005) Antigenotoxic effects of ascorbic acid against megestrol acetate induced genotoxicity in mice. Hum Exp Toxicol 24:121–127

    Article  Google Scholar 

  18. Costa WF, Nepomucino JC (2006) Protective effects of a mixture of vitamins and minerals on the genotoxicity of doxorubicin in somatic cells of Drosophila melanogester. Environ Mol Mutagen 47:18–24

    Article  CAS  PubMed  Google Scholar 

  19. Stevenson DE, Kehrer JP, Kolaja KL, Walborg EF Jr, Klaunig JE (1995) Effect of dietary antioxidants on dieldrin-induced hepatotoxicity in mice. Toxicol Lett 75:177–183

    Article  CAS  PubMed  Google Scholar 

  20. Gultekin F, Delibas N, Yasar S, Kilinc I (2001) In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats. Arch Toxicol 75:88–96

    Article  CAS  PubMed  Google Scholar 

  21. Altuntas I, Delibas N (2002) The effects of fenthion on lipid peroxidation and some liver enzymes: the possible protective role of vitamins E and C. Turk J Med Sci 32:293–297

    CAS  Google Scholar 

  22. Narotsky MG, Best DS, Guidici DL, Cooper RL (2000) Strain comparisons of atrazine-induced pregnancy loss in the rat. Reprod Toxicol 15:61–69

    Article  Google Scholar 

  23. Yousef MI, Awad TI, Mohamed EH (2006) Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by Vitamin E. Toxicology 227:240–247

    Article  CAS  PubMed  Google Scholar 

  24. Lohr GW, Waller HD (1974) Glucose 6 phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York and London, pp 636–643

    Google Scholar 

  25. Rhoda B (1968) Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J Biol Chem 243:1957–1965

    Google Scholar 

  26. Wills ED (1966) Mechanism of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    CAS  PubMed  Google Scholar 

  27. Quigley JP, Gotterer GS (1969) Distribution of (Na+-K+)-stimulated ATPase activity in rat intestinal mucosa. Biochem Biophys Acta 173:456–468

    Article  CAS  PubMed  Google Scholar 

  28. Desaiah D, Chetty CS, Rao KS (1985) Chlordecone inhibition of calmodulin activated calcium ATPase in rat brain synaptosomes. J Toxicol Environ Health 16:189–195

    Article  CAS  PubMed  Google Scholar 

  29. Fiske CH, Subbarrow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375–381

    CAS  Google Scholar 

  30. Lowry OH, Rosenbrough NJ, Farr AL, Randall RL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:266–275

    Google Scholar 

  31. Kramer R, Ginsburg H (1991) Calcium transport and compartment analysis of free and exchangeable calcium in Plasmodium falciparum-infected red cells. J Protozool 38:594–601

    CAS  PubMed  Google Scholar 

  32. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Role of alpha-tocopherol and beta-carotene in ameliorating the fenvalerate-induced changes in oxidative stress, hemato-biochemical parameters, and semen quality of male rats. J Environ Sci Health 39:443–459

    CAS  Google Scholar 

  33. Kamboj A, Kiran R, Sandhir R (2006) N-acetylcysteine ameliorates carbofuran-induced alterations in lipid composition and activity of membrane bound enzymes. Mol Cell Biochem 286:107–114

    Article  CAS  PubMed  Google Scholar 

  34. Rai DK, Sharma B (2007) Carbofuran-induced oxidative stress in mammalian brain. Mol Biotechnol 37:66–71

    Article  CAS  PubMed  Google Scholar 

  35. Sharma Y, Bashir S, Irshad M, Nag TC, Dogra TD (2005) Dimethoate-induced effects on antioxidant status of liver and brain of rats following subchronic exposure. Toxicol 215:173–181

    Article  CAS  Google Scholar 

  36. Kamboj A, Kiran R, Sandhir R (2006) Carbofuran-induced neurochemical and neurobehavioural alterations in rats: attenunation by N-acteylcysteine. Exp Brain Res 170:567–575

    Article  CAS  PubMed  Google Scholar 

  37. Aggarwal S, Poonian A, Kiran R (1996) Effect of carbofuran toxicity on erythrocytes of rat kept on low protein diet. Poll Res 15:237–239

    CAS  Google Scholar 

  38. Kiran R, Varma MN (1990) Age related toxic effect of endosulfan on certain enzymes of rat erythrocytes. Indian J Exp Biol 28:694–696

    CAS  PubMed  Google Scholar 

  39. Hazarika A, Sarkar SN, Kataria M (2001) Subacute toxicity of anilofos, a new organophosphorus herbicide in male rats: effect on lipid peroxidation and ATPase activity. Indian J Exp Biol 39:1113–1117

    CAS  PubMed  Google Scholar 

  40. Sarkadi B, Enyedi A, Gardos G (1980) Molecular properties of the red cell calcium pump. I. Effects of calmodulin, proteolytic digestion and drug kinetics of active calcium uptake in inside-out red cell membrane vesicles. Cell Calcium 1:287–297

    Article  CAS  Google Scholar 

  41. Schatzmann HJ (1975) Active calcium transport and Ca2+ activated ATPase in human red cells. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, vol 6. Academic Press, New York, pp 125–168

    Google Scholar 

  42. Clark MR, Mohandas N, Feo C, Jacobs MH, Shohet SB (1981) Separate mechanisms of deformability loss in ATP-depleted and Ca-loaded erythrocytes. J Clin Invest 67:531–539

    Article  CAS  PubMed  Google Scholar 

  43. Lew VL, Ferreira HG (1978) Calcium transport and the properties of calcium activated potassium channel in red cell membranes. Curr Top Memb Transp 10:217–277

    Article  CAS  Google Scholar 

  44. Shalev O, Mogilner S, Shinar E, Rachmilewitz EA, Schrier SL (1984) Impaired erythrocyte calcium homeostasis in beta-thalassemia. Blood 64:564–566

    CAS  PubMed  Google Scholar 

  45. Ahmad P, Chefurka W (1982) Role of phospholipids in the DDT-induced efflux of potassium in human erythrocytes. Biochim Biophys Acta 689:135–142

    Article  CAS  PubMed  Google Scholar 

  46. Wang SS, Chen L, Xia SK (2007) Cadmium is acutely toxic for murine hepatocytes: effects on intracellular free Ca2+ homeostasis. Physiol Res 56:193–201

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Sandhir, R. & Kiran, R. Alterations in Ca2+ homeostasis in rat erythrocytes with atrazine treatment: positive modulation by vitamin E. Mol Cell Biochem 340, 231–238 (2010). https://doi.org/10.1007/s11010-010-0422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0422-9

Keywords

Navigation