Skip to main content

Advertisement

Log in

Antiproliferative effect of peripheral benzodiazepine receptor antagonist PK11195 in rat mammary tumor cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study aims to establish the antiproliferative effects of PK11195, a peripheral benzodiazepine receptor antagonist (PBR) in rat mammary tumor cells. Breast tumors were induced by administration of a carcinogen, dimethylbenz[a]anthracene to 50-day-old female rats maintained on a standard AIN-76A diet with casein as the protein source. The tumors were developed approximately after 120 days. The tumors were of grade I (20%), grade II (60%), and grade III (20%). The tumors were isolated and cultured in DMEM/F12 media with supplements. We characterized the properties of the isolated cells and study the effect of PK11195 on those cells. We were successful in growing breast tumor cells up to 30 passages for cellular characterization. These cells had high reactivity with Ki-67 and PCNA antibodies suggesting high proliferation rate. These cells were highly invasive as evident by matrigel invading ability. Furthermore, these cells acquired a positive response for CD-31 and VEGF antibodies suggesting angiogenic potential, and also possessed migrating ability/motility as evident by the wound healing properties. These cells expressed elevated levels of PBR, a cancer promoting gene. The proliferation, invasion and migration appear to decrease when treated with PK11195, a PBR antagonist. Furthermore, PK11195 treatment caused an increase in apoptosis as evident by increase in the levels of annexin V. However, the inhibition of cell proliferation by PK11195 was counteracted by Ro5-4864, a PBR agonist. Thus, PBR antagonist may be a potential therapeutic agent for the control of aggressiveness of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Papadimitriou-Taylor J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, Leigh IM (1989) Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci 94:403–413

    Google Scholar 

  2. McDiarmid HM, Douglas GR, Coomber BL, Josephy PD (2002) 2-amino-1-methyl-6-phenylimidezo [4, 5-b]pyridine (PhIP)-induced mutagenesis in cultured Big Blue rat mammary epithelial and fibroblast cells. Environ Mol Mutagen 39:245–253

    Article  CAS  PubMed  Google Scholar 

  3. Ries L, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, Clegg L, Horner MJ, Howlader N, Eisner MP, Reichman M, Edwards BK (eds) (2007) SEER Cancer Statistics Review, 1975–2004, National Cancer Institute, Bethesda, MD, http://seer.cancer.gov/csr/1975_2004/, posted to the SEER Web site

  4. Beurdeley-Thomas A, Miccoli L, Oudard S, Dutrillaux B, Poupon MF (2000) The peripheral benzodiazepine receptors: a review. J Neurooncol 46:45–56

    Article  CAS  PubMed  Google Scholar 

  5. Katz Y, Ben-Baruch G, Kloog Y, Menczer J, Gavish M (1990) Increased density of peripheral benzodiazepine-binding sites in ovarian carcinomas as compared with benign ovarian tumours and normal ovaries. Clin Sci (Lond) 78:155–158

    CAS  Google Scholar 

  6. Venturini I, Alho H, Podkletnova I, Corsi L, Rybnikova E, Pellicci R, Baraldi M, Pelto-Huikko M, Helen P, Zeneroli ML (1999) Increased expression of peripheral benzodiazepine receptors and diazepam binding inhibitor in human tumors sited in the liver. Life Sci 65:2223–2231

    Article  CAS  PubMed  Google Scholar 

  7. Miyazawa N, Hamel E, Diksic M (1998) Assessment of the peripheral benzodiazepine receptors in human gliomas by two methods. J Neurooncol 38:19–26

    Article  CAS  PubMed  Google Scholar 

  8. Mukhopadhyay S, Mukherjee S, Das SK (2006) Increased expression of peripheral benzodiazepine receptor (PBR) in dimethylbenz[a]anthracene-induced mammary tumors in rats. Glycoconj J 23:199–207

    Article  CAS  PubMed  Google Scholar 

  9. Maaser K, Sutter AP, Krahn A, Hopfner M, Grabowski P, Scherubl H (2004) Cell cycle-related signaling pathways modulated by peripheral benzodiazepine receptor ligands in colorectal cancer cells. Biochem Biophy Res Commun 324:878–886

    Article  CAS  Google Scholar 

  10. Carmel I, Fares FA, Leschiner S, Scherübl H, Weisinger G, Gavish M (1999) Peripheral-type benzodiazepine receptors in the regulation of proliferation of MCF-7 human breast carcinoma cell line. Biochem Pharmacol 58:273–278

    Article  CAS  PubMed  Google Scholar 

  11. Landau M, Weizman A, Zoref-Shani E, Beery E, Wasseman L, Landau O, Gavish M, Brenner S, Nordenberg J (1998) Antiproliferative and differentiating effects of benzodiazepine receptor ligands on B16 melanoma cells. Biochem Pharmacol 56:1029–1034

    Article  CAS  PubMed  Google Scholar 

  12. Maaser K, Hopfner M, Jansen A, Weisinger G, Gavish M, Kozikowski AP, Weizman A, Carayon P, Riecken EO, Zeitz M, Scherubl H (2001) Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human colorectal cancer cells. Br J Cancer 85:1771–1780

    Article  CAS  PubMed  Google Scholar 

  13. Sutter AP, Maaser K, Hopfner M, Barthel B, Grabowski P, Faiss S, Carayon P, Zeitz M, Scherubl H (2002) Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human esophageal cancer cells. Int J Cancer 102:318–327

    Article  CAS  PubMed  Google Scholar 

  14. Beinlich A, Strohmeier R, Kaufmann M, Kuhl H (1999) Specific binding of benzodiazepines to human breast cancer cell lines. Life Sci 65:2099–2108

    Article  CAS  PubMed  Google Scholar 

  15. Neary JT, Jorgensen SL, Oracion AM, Bruce JH, Norenberg MD (1995) Inhibition of growth factor-induced DNA synthesis in astrocytes by ligands of peripheral-type benzodiazepine receptors. Brain Res 675:27–30

    Article  CAS  PubMed  Google Scholar 

  16. Ratcliffe SL, Matthews EK (1995) Modification of the photodynamic action of delta-aminolaevulinic acid (ALA) on rat pancreatoma cells by mitochondrial benzodiazepine receptor ligands. Br J Cancer 71:300–305

    CAS  PubMed  Google Scholar 

  17. Kupczyk-Subotkowska L, Siahaan TJ, Basile AS, Friedman HS, Higgins PE, Song D, Gallo JM (1997) Modulation of melphalan resistance in glioma cells with a peripheral benzodiazepine receptor ligand-melphalan conjugate. J Med Chem 40:1726–1730

    Article  CAS  PubMed  Google Scholar 

  18. Okaro AC, Fennell DA, Corbo M, Davidson BR, Cotter FE (2002) Pk11195, a mitochondrial benzodiazepine receptor antagonist, reduces apoptosis threshold in Bcl-XL and Mcl-1 expressing human cholangiocarcinoma cells. Gut 51:556–561

    Article  CAS  PubMed  Google Scholar 

  19. Chelli B, Salvetti A, DaPozzo E, Rechichi M, Spinetti F, Rossi L, Costa B, Lena A, Rainaldi G, Scatena F, Vanacore R, Gremigni V, Martini C (2008) PK11195 differentially affects cell survival in human wild-type and 18 kDa translocator protein-silenced ADF astrocytoma cells. J Cell Biochem 105:712–723

    Article  CAS  PubMed  Google Scholar 

  20. Casellas P, Galiegue S, Basile AS (2002) Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 40:475–486

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez-Polo RA, Carvalho G, Braun T, Decaudin D, Fabre C, Larochette N, Perfettini JL, Djavaheri-Mergny M, Youlyouz-Marfak I, Codogno P, Raphael M, Feuillard J, Kroemer G (2005) PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene 24:7503–7513

    Article  CAS  PubMed  Google Scholar 

  22. Darcy KM, Zangani D, Wohlhueter AL, Huang RY, Vaughan MM, Russell JA, Ip MM (2000) Changes in ErbB2 (her-2/neu), ErbB3, and ErbB4 during growth, differentiation, and apoptosis of normal rat mammary epithelial cells. J Histochem Cytochem 48:63–80

    CAS  PubMed  Google Scholar 

  23. Laduca JR, Sinha DK (1996) Tumorigenesis of rat mammary epithelial cells by N-nitroso-N-methylurea in an in vitro system: characterization of the microtumors. In Vitro Cell Dev Biol Anim 32:204–210

    Article  CAS  PubMed  Google Scholar 

  24. Zwiebel JA, Davis MR, Kohn E, Salomon DS, Kidwell WR (1982) Anchorage-independent growth-conferring factor production by rat mammary tumor cells. Cancer Res 42:5117–5125

    CAS  PubMed  Google Scholar 

  25. Ethier SP, Langton BC, Dilts CA (1996) Growth factor-independent proliferation of rat mammary carcinoma cells by autocrine secretion of neu-differentiation factor/heregulin and transforming growth factor-alpha. Mol Carcinog 15:134–143

    Article  CAS  PubMed  Google Scholar 

  26. Mukhopadhyay S, Ballard BR, Mukherjee S, Kabir SM, Das SK (2006) Beneficial effects of soy protein in the initiation and progression against dimethylbenz[a]anthracene-induced breast tumors in female rats. Mol Cell Biochem 290:169–176

    Article  CAS  PubMed  Google Scholar 

  27. Darcy KM, Zangani D, Lee PH, Ip MM (2000) Isolation and culture of normal rat mammary epithelial cells. In: Ip MM, Asch (eds) Methods in mammary gland biology and breast cancer research. Kluwer/Plenum Publishers, New York, pp 163–176

    Google Scholar 

  28. Fidler IJ (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth GHA Clowes memorial award lecture. Cancer Res 50:6130–6138

    CAS  PubMed  Google Scholar 

  29. Auerbach W, Auerbach R (1994) Angiogenesis inhibition: a review. Pharmacol Ther 63:265–311

    Article  CAS  PubMed  Google Scholar 

  30. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  31. Fiddler IJ (1995) Modulation of the organ microenvironment for the treatment of cancer metastasis. J Natl Cancer Inst 84:1588–1592

    Google Scholar 

  32. Parums DV, Cordell JL, Micklem F, Heryet AR, Gatter KC, Masons DY (1990) JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J Clin Pathol 43:752–757

    Article  CAS  PubMed  Google Scholar 

  33. Giatromanolaki A, Koukourakis MI, O’Byrne K, Kaklamanis L, Dicoglou C, Trichia E, Whitehouse R, Harris AL, Gatter KC (1996) Non-small cell lung cancer: c-erbB-2 overexpression correlates with low angiogenesis and poor prognosis. Anticancer Res 16:3819–3825

    CAS  PubMed  Google Scholar 

  34. Horak ER, Leek R, Klenk N, LeJeune S, Smith K, Stuart N, Greenall M, Stepniewska K, Harris AL (1992) Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340:1120–1124

    Article  CAS  PubMed  Google Scholar 

  35. Takebayashi Y, Akiyama S, Akiba S, Yamada K, Miyadera K, Sumizawa T, Yamada Y, Murata F, Aikou T (1996) Clinicopathologic and prognostic significance of an angiogenic factor, thymidine phosphorylase, in human colorectal carcinoma. J Natl Cancer Inst 88:1110–1117

    Article  CAS  PubMed  Google Scholar 

  36. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, Ruby SG, O’Malley F, Simpson JF, Connolly JL, Hayes DF, Edge SB, Lichter A, Schnitt SJ (2000) Prognostic factors in breast cancer. Arch Pathol Lab Med 124:966–978

    CAS  PubMed  Google Scholar 

  37. Archer CD, Patron M, Smith IE, Ellis PA, Salter J, Ashley S, Gui G, Sacks N, Ebbs SR, Allum W, Nasiri N, Dowsett M (2003) Early changes in apoptosis and proliferation following primary chemotherapy for breast cancer. Br J Cancer 89:1035–1041

    Article  CAS  PubMed  Google Scholar 

  38. Petit T, Wilt M, Velten M, Millon R, Rodier JF, Borel C, Mors R, Haegelé P, Eber M, Ghnassia JP (2004) Comparative value of tumor grade, hormonal receptors, Ki-67, HER-2 and topoisomerase II alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer 40:205–211

    Article  CAS  PubMed  Google Scholar 

  39. Aaltomaa S, Lipponen P, Syrjanen K (1993) Proliferating cell nuclear antigen (PCNA) immunolabeling as a prognostic factor in axillary lymph node negative breast cancer. Anticancer Res 13:533–538

    CAS  PubMed  Google Scholar 

  40. Kudo Y, Ogawa I, Kitagawa M, Kitajima S, Siriwardena S, Aobara N, Matsuda C, Miyauchi M, Takata T (2006) Establishment and characterization of a spindle cell squamous carcinoma cell line. J Oral Pathol Med 35:479–483

    Article  CAS  PubMed  Google Scholar 

  41. Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39:295–312

    Article  CAS  PubMed  Google Scholar 

  42. Toi M, Bando H, Ogawa T, Muta M, Hornig C, Weich HA (2002) Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer. Int J Cancer 98:14–18

    Article  CAS  PubMed  Google Scholar 

  43. Gasparini G (2000) Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist 5:37–44

    Article  CAS  PubMed  Google Scholar 

  44. Linderholm B, Lindh B, Tavelin B, Grankvist K, Henriksson R (2000) p53 and vascular-endothelial-growth-factor (VEGF) expression predicts outcome in 833 patients with primary breast carcinoma. Int J Cancer 89:51–62

    Article  CAS  PubMed  Google Scholar 

  45. Eppenberger U, Kueng W, Schlaeppi JM, Roesel JL, Benz C, Mueller H, Matter A, Zuber M, Luescher K, Litschgi M, Schmitt M, Foekens JA, Eppenberger-Castori S (1998) Markers of tumor angiogenesis and proteolysis independently define high- and low-risk subsets of node-negative breast cancer patients. J Clin Oncol 16:3129–3136

    CAS  PubMed  Google Scholar 

  46. Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M, Matsubara I, Vinante O, Bonoldi E, Boracchi P, Gatti C, Suzuki H, Tominaga T (1997) Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 89:139–147

    Article  CAS  PubMed  Google Scholar 

  47. Schlüter C, Duchrow M, Wohlenberg C, Becker MH, Key G, Flad HD, Gerdes J (1993) The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol 123:513–522

    Article  PubMed  Google Scholar 

  48. Tavassoli FN (1992) Pathology of the breast. Appleton and Lange, Norwalk, p 548

    Google Scholar 

  49. Chu JS, Huang CS, Chang KJ (1998) Proliferating cell nuclear antigen (PCNA) immunolabeling as a prognostic factor in invasive ductal carcinoma of the breast in Taiwan. Cancer Lett 131:145–152

    Article  CAS  PubMed  Google Scholar 

  50. Tahan SR, Neuberg DS, Dieffenbach A, Yacoub L (1993) Prediction of early relapse and shortened survival in patients with breast cancer by proliferating cell nuclear antigen score. Cancer 71:3552–3559

    Article  CAS  PubMed  Google Scholar 

  51. Tsurimoto T (1998) PCNA, a multifunctional ring on DNA. Biochim Biophys Acta 1443:23–39

    CAS  PubMed  Google Scholar 

  52. Oshimura M, Barrett JC (1986) Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer. Environ Mutagen 8:129–159

    Article  CAS  PubMed  Google Scholar 

  53. Visscher DW, Jarbo RJ, Jacobsen G, Kambouris A, Talpos G, Sakr W, Crissman JD (1990) Multiparametric deoxyribonucleic acid and cell cycle analysis of breast carcinomas by flow cytometry. Clinicopathologic correlations. Lab Invest 62:370–378

    CAS  PubMed  Google Scholar 

  54. Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, Kim SH, Kim JG, Kim CH (2004) Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J 18:1670–1681

    Article  CAS  PubMed  Google Scholar 

  55. Hendrix MJ, Seftor EA, Seftor RE, Fidler IJ (1987) A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett 38:137–147

    Article  CAS  PubMed  Google Scholar 

  56. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Saronson SA, Kozlowski JM, McEwan RN (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245

    CAS  PubMed  Google Scholar 

  57. Terranova VP, Hujanen ES, Loeb DM, Martin GR, Thornburg L, Glushko V (1986) Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc Natl Acad Sci USA 83:465–469

    Article  CAS  PubMed  Google Scholar 

  58. Hardwick M, Fertikh D, Culty M, Li H, Vidic B, Papadopoulos V (1999) Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. Cancer Res 59:831–842

    CAS  PubMed  Google Scholar 

  59. Camins A, Diez-Fernandez C, Pujadas E, Camarasa J, Escubedo E (1995) A new aspect of the antiproliferative action of peripheral-type benzodiazepine receptor ligands. Eur J Pharmacol 272:289–292

    Article  CAS  PubMed  Google Scholar 

  60. Pawlikowski M, Kunert-Radek J, Radek A, Stepien H (1988) Inhibition of cell proliferation of human gliomas by benzodiazepines in vitro. Acta Neurol Scand 77:231–233

    Article  CAS  PubMed  Google Scholar 

  61. Kunert-Radek J, Stepien H, Pawlikowski M (1994) Inhibition of rat pituitary tumor cell proliferation by benzodiazepines in vitro. Neuroendocrinology 59:92–96

    Article  CAS  PubMed  Google Scholar 

  62. Clarke D, Ryan PJ (1980) Tranquillizers can block mitogenesis in 3T3 cells and induce differentiation in Friend cells. Nature 287:160–161

    Article  CAS  PubMed  Google Scholar 

  63. Banker DE, Cooper JJ, Fennell DA, Willman C, Appelbaum FR, Cotter FE (2002) PK11195, a peripheral benzodiazepine receptor ligand, chemosensitizes acute myeloid leukemia cells to relevant therapeutic agents, by mitochondrial and non-mitochondrial mechanisms. Leuk Res 26:91–106

    Article  CAS  PubMed  Google Scholar 

  64. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  CAS  PubMed  Google Scholar 

  65. Hirsch T, Decaudin D, Susin SA, Marchetti P, Larochette N, Resche-Rigon M, Kroemer G (1998) PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp Cell Res 241:426–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the US Army Grant DAMD17-03-1-0352 and 2006 FAMRI Clinical Investigator Award #062415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salil K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, S., Guillory, B., Mukherjee, S. et al. Antiproliferative effect of peripheral benzodiazepine receptor antagonist PK11195 in rat mammary tumor cells. Mol Cell Biochem 340, 203–213 (2010). https://doi.org/10.1007/s11010-010-0419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0419-4

Keywords

Navigation