Skip to main content
Log in

Kynurenine-induced photo oxidative damage to lens in vitro: protective effect of caffeine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Photochemical generation of reactive species of oxygen in the lens and aqueous and consequent physiological damage to the tissue has been implicated in the genesis of human cataracts. The present studies were undertaken to examine the feasibility of possible prevention of such damage to the lens initiated by UV activation of kynurenine, a well-known photosensitizer in the human lens. The studies were done by organ culturing intact mouse lenses in medium containing kynurenine and exposed to UVA. Tissue damage was assessed by the inhibition of its ability to carry active transport of rubidium ions and the associated decrements in the levels of GSH and ATP. These deleterious effects were significantly prevented by caffeine, an alkaloid present in many common beverages and known to chemically deactivate the said oxygen derivatives. Further studies on the pharmacological significance of the findings are hence in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varma SD, Ets TK, Richards RD (1977) Protection against superoxide radicals in rat lens. Ophthalmic Res 9:421–431

    Article  CAS  Google Scholar 

  2. Bhuyan DK, Bhuyan KC (1978) Superoxide dismutase of the eye: relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage. Biochim Biophys Acta 542:28–38

    CAS  PubMed  Google Scholar 

  3. Zigler JS Jr, Goosey JD (1984) Singlet oxygen as a possible factor in human senile nuclear cataract. Curr Eye Res 3:39–45

    Article  Google Scholar 

  4. Fridovich I (1975) Superoxide dismutases. Ann Rev Biochem 44:147–159

    Article  CAS  PubMed  Google Scholar 

  5. Halliwell B (1981) The biological effects of the superoxide radical and its products. Bull Euro Physiopathol Respir 17(Suppl):21–29

    CAS  Google Scholar 

  6. Varma SD, Kumar S, Richards RD (1979) Light induced damage to ocular lens cation pump. Prevention by Vitamin C. Proc Natl Acad Sci 76:3504–3506

    Article  CAS  PubMed  Google Scholar 

  7. Varma SD, Chand D, Sharma YR, Kuck JF Jr, Richards RD (1984) Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res 3:35–57

    Article  CAS  PubMed  Google Scholar 

  8. Kinsey VE, Fishman CE (1951) Studies in the crystalline lens. Distribution of cytochrome, total riboflavin, lactate and pyruvate and their metabolic significance. Arch Ophthalmol 46:536–541

    CAS  Google Scholar 

  9. Philpot FJ, Pirie A (1943) Riboflavin adenine di-nucleotide in ox ocular tissue. Biochem J 37:250–254

    CAS  PubMed  Google Scholar 

  10. Van Heyningen R (1971) Fluorescent derivatives of 3-hydroxy-l-kynurenine in the lens of man, the baboon and the grey squirrel. Biochem J 123:30P–31P

    PubMed  Google Scholar 

  11. Herrmann GP, Brenneisen M, Wlaschek J, Wenk K, Faisst G, Quel C et al (1998) Psoralen photoactivation promotes morphological and functional changes in fibroblasts in vitro reminiscent of cellular senescence. J Cell Sci 111:759–767

    CAS  PubMed  Google Scholar 

  12. Chiarugi A, Rapizzi E, Moroni F, Moroni F (1999) The kynurenine metabolic pathway in the eye: studies on 3-hydroxykynurenine, a putative cataractogenic compound. FEBS Lett 443:197–200

    Article  Google Scholar 

  13. Reszka KJ, Bilske P, Chigness CF, Dillon J (1996) Free radical reactions photosensitized by the human lens component, kynurenine: an EPR and spin trapping investigation. Free Radic Biol Med 20:23–24

    Article  CAS  PubMed  Google Scholar 

  14. Varma SD, Hegde KR, Kovtun S (2008) UV-B-induced damage to the lens in vitro: prevention by caffeine. J Ocul Pharmacol Ther 24:439–444

    Article  CAS  PubMed  Google Scholar 

  15. Harris JH, Becker B (1965) Cation transport of the lens. Invest Ophthalmol 4:710–722

    Google Scholar 

  16. Strehler BJ, Totter JK (1954) Determination of ATP and related compounds: firefly luminescence and other methods. In: Glick D (ed) Methods of biochemical analysis, vol 1. Interscience Publishers, New York, p 341

    Chapter  Google Scholar 

  17. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  18. Taylor HR, West SK, Rosenthal FS, Munoz B, Newland HS, Abbey H, Emmett EA (1988) Effect of ultraviolet radiation on cataract formation. N Engl J Med 319:1429–1433

    Article  CAS  PubMed  Google Scholar 

  19. Ultraviolet radiation: solar radiation and human health. Too much sun is dangerous. www.who.int/mediacentre/factsheets/fs227/en

  20. Julian J, Chytil F (1970) Participation of xanthine oxidase in the activation of liver tryptophan pyrrolase. J Biol Chem 245:1161–1168

    CAS  PubMed  Google Scholar 

  21. Yamamoto S, Hayashi O (1967) Tryptophan pyrrolase of rabbit intestine 242:5260–5266

    CAS  Google Scholar 

  22. Han Q, Beerntsen BT, Li J (2007) The tryptophan oxidation pathway in mosquitoes with emphasis on xanthurenic acid biosynthesis. J Insect Physiol 53:254–263

    Article  CAS  PubMed  Google Scholar 

  23. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351

    Article  CAS  Google Scholar 

  24. Varma SD (1987) Ascorbic acid and the eye with special reference to the lens. Ann N Y Acad Sci 498:280–306

    Article  CAS  PubMed  Google Scholar 

  25. Varma SD, Mizuno A, Kinoshita JH (1977) Diabetic cataracts and flavonoids. Science 195:205–206

    Article  CAS  PubMed  Google Scholar 

  26. Trevithick JR, Linklater HA, Mitton KP, Dzialoszynski T, Sanford SE (1989) Modeling cortical cataractogenesis: IX. Activity of vitamin E and esters in preventing cataracts and gamma-crystallin leakage from lenses in diabetic rats. Ann N Y Acad Sci 570:358–371

    Article  CAS  PubMed  Google Scholar 

  27. Ayala MN, Michael R, Söderberg PG (2000) In vivo cataract after repeated exposure to ultraviolet radiation. Exp Eye Res 70:451–456

    Article  CAS  PubMed  Google Scholar 

  28. Ayala MN, Söderberg PG (2004) Vitamin E can protect against ultraviolet radiation-induced cataract in albino rats. Ophthalmic Res 36:264–269

    Article  CAS  PubMed  Google Scholar 

  29. Valero MP, Fletcher AE, Stavols BLD et al (2002) Vitamin C is associated with reduced risk of cataract in a Mediterranean population. J Nutr 132:1299–1306

    CAS  PubMed  Google Scholar 

  30. Jacques PG, Chylack LT Jr, Haskinson SE, Khu PM et al (2001) Long term nutrient intake and early age related nuclear lens opacities. Arch Ophthalmol 119:1009–1019

    CAS  PubMed  Google Scholar 

  31. Robertson JM, Donner AP, Trevithick JR (1991) A possible role for vitamin C and E in cataract prevention. Am J Clin Nutr 53(1 suppl):3465–3515

    Google Scholar 

  32. Devasagayam TPA, Kamat JP, Mohan H, Kesavan PC (1996) Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta 1282:63–70

    Article  PubMed  Google Scholar 

  33. Shi X, Dalal NS, Jain AC (1991) Antioxidant behavior of caffeine: efficient scavenging of hydroxyl radicals. Food Chem Toxicol 29:1–6

    Article  CAS  PubMed  Google Scholar 

  34. Stadler RH, Fay LB (1995) Antioxidative reactions of caffeine: formation of 8-oxocaffeine (1,3,7 trimethyl uric acid) in coffee subjected to oxidative stress. J Agric Food Chem 43:1332–1338

    Article  CAS  Google Scholar 

  35. Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250

    CAS  PubMed  Google Scholar 

  36. Varma SD, Hegde KR (in press) Prevention of oxidative damage to lens by caffeine. J Ocul Pharmacol Ther

Download references

Acknowledgment

The authors would like to thank NEI, NIH for financial support through RO1 EY01292 grant, and Svitlana Kovtun for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shambhu D. Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, S.D., Hegde, K.R. Kynurenine-induced photo oxidative damage to lens in vitro: protective effect of caffeine. Mol Cell Biochem 340, 49–54 (2010). https://doi.org/10.1007/s11010-010-0399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0399-4

Keywords

Navigation