Angiostatic effects of K252a, a Trk inhibitor, in murine brain capillary endothelial cells

Abstract

Nerve growth factor (NGF) supports the survival and differentiation of sympathetic and sensory neurons and is also mitogenic for a variety of tumors. K252a, an antagonist of NGF receptor TrkA, was previously used as a pharmacological tool to study NGF actions and as a lead compound for developing anti-tumor drugs. Since recently, NGF was characterized as an angiogenic factor, we sought to investigate the angiostatic properties of K252a on endothelial cells (ECs). For this purpose, we used a murine brain microcapillary ECs model in which we found autocrine release of NGF in the culture medium and activation of TrkA receptor-induced downstream signaling molecules Erk1/2, Akt, and PLCγ. In this model, we demonstrated the angiostatic property of K252a based on its ability to affect several important angiogenic steps. K252a, but not its cell membrane impermeable analogue K252b at 100 nM: (i) inhibited the proliferation of the ECs by 45 ± 9%; (ii) reduced by 70 ± 4% the migration of the ECs measured in a wound-closure model; (iii) reduced by 29 ± 9% the formation of tube-like structures of the ECs cultured on Matrigel; (iv) stimulated by 100 ± 25% the collagen deposition by the ECs, a process responsible for the increased endothelial barrier functions expressed by 22 ± 5% reduction of paracellular permeability and by 17 ± 3% elevation of transendothelial electrical resistance. These data suggest that NGF/TrkA may represent a target for the development of novel, K252a-derived multikinase inhibitors drugs with anti-tumor and angiostatic dual activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Herbst RS (2006) Therapeutic options to target angiogenesis in human malignancies. Expert Opin Emerg Drugs 11:635–650

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R (2001) Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci USA 98:4160–4165

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D (2008) Nerve growth factor as an angiogenic factor. Microvasc Res 75:135–141

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Lecht S, Puxeddu I, Levi-Schaffer F, Reich R, Davidson B, Schaefer E, Marcinkiewicz C, Lelkes PI, Lazarovici P (2007) Nerve growth factor—a neurotrophin with angiogenic activity. In: Maragudakis M (ed) Angiogenesis: basic science and clinical applications. Transworld Research Network, Kerala, pp 99–113

    Google Scholar 

  6. 6.

    Lazarovici P, Marcinkiewicz C, Lelkes PI (2006) Cross talk between the cardiovascular and nervous systems: neurotrophic effects of vascular endothelial growth factor (VEGF) and angiogenic effects of nerve growth factor (NGF)-implications in drug development. Curr Pharm Des 12:2609–2622

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Aloe L, Tirassa P, Bracci-Laudiero L (2001) Nerve growth factor in neurological and non-neurological diseases: basic findings and emerging pharmacological prospectives. Curr Pharm Des 7:113–123

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Kruttgen A, Schneider I, Weis J (2006) The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol 16:304–310

    Article  PubMed  Google Scholar 

  9. 9.

    Singer HS, Hansen B, Martinie D, Karp CL (1999) Mitogenesis in glioblastoma multiforme cell lines: a role for NGF and its TrkA receptors. J Neurooncol 45:1–8

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Menter DG, Herrmann JL, Marchetti D, Nicolson GL (1994) Involvement of neurotrophins and growth factors in brain metastasis formation. Invasion Metastasis 14:372–384

    CAS  PubMed  Google Scholar 

  11. 11.

    Ruggeri BA, Miknyoczki SJ, Singh J, Hudkins RL (1999) Role of neurotrophin-trk interactions in oncology: the anti-tumor efficacy of potent and selective trk tyrosine kinase inhibitors in pre-clinical tumor models. Curr Med Chem 6:845–857

    CAS  PubMed  Google Scholar 

  12. 12.

    Fiore M, Chaldakov GN, Aloe L (2009) Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev Neurosci 20:133–145

    CAS  PubMed  Google Scholar 

  13. 13.

    Tuszynski MH, Thal L, Pay M, Salmon DP, Hoi Sang U, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Pittenger G, Vinik A (2003) Nerve growth factor and diabetic neuropathy. Exp Diabesity Res 4:271–285

    PubMed  Google Scholar 

  15. 15.

    Aloe L, Tirassa P, Lambiase A (2008) The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacol Res 57:253–258

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H (2003) Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22:5592–5601

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Davidson B, Reich R, Lazarovici P, Nesland JM, Skrede M, Risberg B, Trope CG, Florenes VA (2003) Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res 9:2248–2259

    CAS  PubMed  Google Scholar 

  18. 18.

    Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, Zappala G, Pafumi C, Bernardini R (2002) Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J 16:1307–1309

    CAS  PubMed  Google Scholar 

  19. 19.

    Lazarovici P, Matsuda Y, Kaplan D, Guroff G (1997) The protein kinase inhibitors K252a and Staurosporine as modifiers of neurotrophin receptor signal transduction. In: Gutman Y, Lazarovici P (eds) Cellular and molecular mechanisms of toxin action: toxins and signal transduction. Harwood Academic Publishers, Amsterdam, pp 69–93

    Google Scholar 

  20. 20.

    Tapley P, Lamballe F, Barbacid M (1992) K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 7:371–381

    CAS  PubMed  Google Scholar 

  21. 21.

    Roux PP, Dorval G, Boudreau M, Angers-Loustau A, Morris SJ, Makkerh J, Barker PA (2002) K252a and CEP1347 are neuroprotective compounds that inhibit mixed-lineage kinase-3 and induce activation of Akt and ERK. J Biol Chem 277:49473–49480

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Perez-Pinera P, Hernandez T, Garcia-Suarez O, de Carlos F, Germana A, Del Valle M, Astudillo A, Vega JA (2007) The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol Cell Biochem 295:19–26

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Morotti A, Mila S, Accornero P, Tagliabue E, Ponzetto C (2002) K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21:4885–4893

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Takai N, Ueda T, Nishida M, Nasu K, Narahara H (2008) K252a is highly effective in suppressing the growth of human endometrial cancer cells, but has little effect on normal human endometrial epithelial cells. Oncol Rep 19:749–753

    CAS  PubMed  Google Scholar 

  25. 25.

    Takai N, Ueda T, Nishida M, Nasu K, Fukuda J, Miyakawa I (2005) K252a inhibits proliferation of ovarian cancer cells by upregulating p21WAF1. Oncol Rep 14:141–143

    CAS  PubMed  Google Scholar 

  26. 26.

    Illmer T, Ehninger G (2007) FLT3 kinase inhibitors in the management of acute myeloid leukemia. Clin Lymphoma Myeloma 8(Suppl 1):S24–S34

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Zacchigna S, Lambrechts D, Carmeliet P (2008) Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 9:169–181

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Lecht S, Arien-Zakay H, Marcinkiewicz C, Lelkes PI, Lazarovici P (2009) Nerve growth factor-induced protection of brain capillary endothelial cells exposed to oxygen-glucose deprivation involves attenuation of Erk phosphorylation. J Mol Neurosci doi:10.1007/s12031-12009-19318-12030

  29. 29.

    Arien-Zakay H, Lecht S, Perets A, Roszell B, Lelkes PI, Lazarovici P (2009) Quantitative assessment of neuronal differentiation in three-dimensional collagen gels using enhanced green fluorescence protein expressing PC12 pheochromocytoma cells. J Mol Neurosci 37:225–237

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Arien-Zakay H, Lecht S, Bercu MM, Tabakman R, Kohen R, Galski H, Nagler A, Lazarovici P (2008) Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp Neurol 216:83–94

    Article  PubMed  Google Scholar 

  31. 31.

    Lelkes PI, Hahn KA, Karmiol S, Schmidt DH (1998) Hypoxia/reoxygenation enhances tube formation of cultured human microvascular endothelial cells: role of reactive oxygen species. In: Maragoudakis ME (ed) Angiogenesis. Plenum Press, New York and London

    Google Scholar 

  32. 32.

    Papadimitriou E, Unsworth BR, Maragoudakis ME, Lelkes PI (1993) Time course and quantitation of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium 1:207–219

    Article  Google Scholar 

  33. 33.

    Mizuguchi H, Hashioka Y, Fujii A, Utoguchi N, Kubo K, Nakagawa S, Baba A, Mayumi T (1994) Glial extracellular matrix modulates gamma-glutamyl transpeptidase activity in cultured bovine brain capillary and bovine aortic endothelial cells. Brain Res 651:155–159

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Kohan M, Bader R, Puxeddu I, Levi-Schaffer F, Breuer R, Berkman N (2007) Enhanced osteopontin expression in a murine model of allergen-induced airway remodelling. Clin Exp Allergy 37:1444–1454

    CAS  PubMed  Google Scholar 

  35. 35.

    Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M (2003) Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 990:95–112

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Katzir I, Shani J, Regev K, Shabashov D, Lazarovici P (2002) A quantitative bioassay for nerve growth factor, using PC12 clones expressing different levels of trkA receptors. J Mol Neurosci 18:251–264

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Lecht S, Foerster C, Arien-Zakay H, Marcinkiewicz C, Lazarovici P, Lelkes PI (2009) Cardiac microvascular endothelial cells express and release nerve growth factor but not fibroblast growth factor-2. In Vitro Cell Dev Biol Anim doi:10.1007/s11626-11009-19267-11625

  38. 38.

    Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Ohmi K, Yamashita S, Hashimoto Y, Nonomura Y (1993) Induction of giant endothelial cells in culture by K-252a, a protein kinase inhibitor. Jpn J Pharmacol 63:195–202

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648–1649

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313:1318–1325

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Grant DS, Lelkes PI, Fukuda K, Kleinman HK (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev Biol 27A:327–336

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Papadimitriou E, Waters CR, Manolopoulos VG, Unsworth BR, Maragoudakis ME, Lelkes PL (2001) Regulation of extracellular matrix remodeling and MMP-2 activation in cultured rat adrenal medullary endothelial cells. Endothelium 8:181–194

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Utoguchi N, Ikeda K, Saeki K, Oka N, Mizuguchi H, Kubo K, Nakagawa S, Mayumi T (1995) Ascorbic acid stimulates barrier function of cultured endothelial cell monolayer. J Cell Physiol 163:393–399

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Ashino H, Shimamura M, Nakajima H, Dombou M, Kawanaka S, Oikawa T, Iwaguchi T, Kawashima S (2003) Novel function of ascorbic acid as an angiostatic factor. Angiogenesis 6:259–269

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Moser KV, Reindl M, Blasig I, Humpel C (2004) Brain capillary endothelial cells proliferate in response to NGF, express NGF receptors and secrete NGF after inflammation. Brain Res 1017:53–60

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Andjelkovic AV, Stamatovic SM, Keep RF (2003) The protective effects of preconditioning on cerebral endothelial cells in vitro. J Cereb Blood Flow Metab 23:1348–1355

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Thijssen VL, van Beijnum JR, Mayo KH, Griffioen AW (2007) Identification of novel drug targets for angiostatic cancer therapy; it takes two to tango. Curr Pharm Des 13:3576–3583

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Satoh M, Kokubu N, Matsuo K, Takayanagi I (1995) Alpha 1A-adrenoceptor subtype effectively increases Ca(2+)-sensitivity for contraction in rabbit thoracic aorta. Gen Pharmacol 26:357–362

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Ohmi K, Yamashita S, Nonomura Y (1990) Effect of K252a, a protein kinase inhibitor, on the proliferation of vascular smooth muscle cells. Biochem Biophys Res Commun 173:976–981

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Miura S, Matsuo Y, Saku K (2004) Simvastatin suppresses coronary artery endothelial tube formation by disrupting Ras/Raf/ERK signaling. Atherosclerosis 175:235–243

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J, Zhu W, Wu D, Xu A (2008) Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol 28:835–840

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Tabruyn SP, Griffioen AW (2007) Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 355:1–5

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Ali AS, Ali S, El-Rayes BF, Philip PA, Sarkar FH (2009) Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev 35:1–8

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Grothey A, Galanis E (2009) Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 6:507–518

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Abdiche YN, Malashock DS, Pons J (2008) Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors. Protein Sci 17:1326–1335

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5:835–844

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Faivre S, Demetri G, Sargent W, Raymond E (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Quintas-Cardama A, Cortes J (2008) Nilotinib: a phenylamino-pyrimidine derivative with activity against BCR-ABL, KIT and PDGFR kinases. Future Oncol 4:611–621

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Festuccia C, Muzi P, Gravina GL, Millimaggi D, Speca S, Dolo V, Ricevuto E, Vicentini C, Bologna M (2007) Tyrosine kinase inhibitor CEP-701 blocks the NTRK1/NGF receptor and limits the invasive capability of prostate cancer cells in vitro. Int J Oncol 30:193–200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant-in-aid form the Stein Family Foundations (PL and PIL); PL is affiliated and partially supported by the David R. Bloom Center for Pharmacy; and the Dr. Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel; SL is supported by “Eshkol fellowship” from the Israeli Ministry of Science and Technology. The authors would like to acknowledge the help of Mrs. Zehava Cohen for graphics preparation and the constructive remarks of the referees.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philip Lazarovici.

Additional information

This study is part of the PhD thesis of SL to be submitted to The Hebrew University of Jerusalem.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lecht, S., Arien-Zakay, H., Kohan, M. et al. Angiostatic effects of K252a, a Trk inhibitor, in murine brain capillary endothelial cells. Mol Cell Biochem 339, 201–213 (2010). https://doi.org/10.1007/s11010-010-0386-9

Download citation

Keywords

  • K252a
  • K252b
  • Angiostatic
  • Nerve growth factor
  • TrkA receptor
  • Signaling