Skip to main content
Log in

Changes in E-NTPDase 3 expression and extracellular nucleotide hydrolysis during the myofibroblast/lipocyte differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatic stellate cells (HSC) play a critical role in the development and maintenance of liver fibrosis. HSC are lipocytes that displayed the capacity to develop into myofibroblast-like cells. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate the concentration of extracellular nucleotides, signaling molecules that play a role in the pathogenesis of hepatic fibrosis. In the present study, we identified and compared the expressions of E-NTPDase family members in two different phenotypes of the mouse hepatic stellate cell line (GRX) and evaluated the nucleotide hydrolysis by these cells. We show that both phenotypes of GRX cell line expressed NTPDase 3 and 5. However, only activated cells expressed NTPDase 6. In quiescent-like cells, the hydrolysis of triphosphonucleosides was significantly higher, and was related to an increase in Entpd3 mRNA expression. The diphosphonucleosides were hydrolyzed at a similar rate by two phenotypes of GRX cells. We suggest that up-regulation of Entpd3 mRNA expression modulates the extracellular concentration of nucleotides/nucleosides and affect P2-receptor signaling differently in quiescent-like cells and may play a role in the regulation of HSC functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedman SL (2003) Liver fibrosis—from bench to bedside. J Hepatol 38(Suppl 1):S38–S53

    Article  PubMed  Google Scholar 

  2. Moreira RK (2007) Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med 131:1728–1734

    CAS  PubMed  Google Scholar 

  3. Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21:311–335. doi:10.1055/s-2001-17550

    Article  CAS  PubMed  Google Scholar 

  4. Kisseleva T, Brenner DA (2006) Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 21(Suppl 3):S84–S87. doi:10.1111/j.1440-1746.2006.04584.x

    Article  CAS  PubMed  Google Scholar 

  5. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172. doi:10.1152/physrev.00013.2007

    Article  CAS  PubMed  Google Scholar 

  6. Gabele E, Brenner DA, Rippe RA (2003) Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Front Biosci 8:d69–d77

    Google Scholar 

  7. Friedman SL (2004) Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 1:98–105. doi:10.1038/ncpgasthep0055

    Article  PubMed  Google Scholar 

  8. Prosser CC, Yen RD, Wu J (2006) Molecular therapy for hepatic injury and fibrosis: where are we? World J Gastroenterol 12:509–15

    Google Scholar 

  9. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694. doi:10.1016/j.bbamcr.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  10. Dranoff JA, Ogawa M, Kruglov EA, Gaca MD, Sevigny J, Robson SC, Wells RG (2004) Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287:G417–G424. doi:10.1152/ajpgi.00294.2003

    Article  CAS  PubMed  Google Scholar 

  11. Kruglov EA, Correa PR, Arora G, Yu J, Nathanson MH, Dranoff JA (2007) Molecular basis for calcium signaling in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292:G975–G982. doi:10.1152/ajpgi.00401.2006

    Article  CAS  PubMed  Google Scholar 

  12. Hashmi AZ, Hakim W, Kruglov EA, Watanabe A, Watkins W, Dranoff JA, Mehal WZ (2007) Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292:G395–G401. doi:10.1152/ajpgi.00208.2006

    Article  CAS  PubMed  Google Scholar 

  13. Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    Google Scholar 

  14. Kukulski F, Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Knowles AF, Robson SC, Kirley TL, Sevigny J (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 1:193–204. doi:10.1007/s11302-005-6217-x

    Article  CAS  PubMed  Google Scholar 

  15. Bigonnesse F, Levesque SA, Kukulski F, Lecka J, Robson SC, Fernandes MJ, Sevigny J (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8. Biochemistry 43:5511–5519. doi:10.1021/bi0362222

    Article  CAS  PubMed  Google Scholar 

  16. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430. doi:10.1007/s11302-006-9003-5

    Article  CAS  PubMed  Google Scholar 

  17. Braun N, Fengler S, Ebeling C, Servos J, Zimmermann H (2000) Sequencing, functional expression and characterization of rat NTPDase6, a nucleoside diphosphatase and novel member of the ecto-nucleoside triphosphate diphosphohydrolase family. Biochem J 351(Pt 3):639–647

    Google Scholar 

  18. Hicks-Berger CA, Chadwick BP, Frischauf AM, Kirley TL (2000) Expression and characterization of soluble and membrane-bound human nucleoside triphosphate diphosphohydrolase 6 (CD39L2). J Biol Chem 275:34041–34045. doi:10.1074/jbc.M004723200

    Article  CAS  PubMed  Google Scholar 

  19. Shi JD, Kukar T, Wang CY, Li QZ, Cruz PE, Davoodi-Semiromi A, Yang P, Gu Y, Lian W, Wu DH, She JX (2001) Molecular cloning and characterization of a novel mammalian endo-apyrase (LALP1). J Biol Chem 276:17474–17478. doi:10.1074/jbc.M011569200

    Article  CAS  PubMed  Google Scholar 

  20. Ivanenkov VV, Murphy-Piedmonte DM, Kirley TL (2003) Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function. Biochemistry 42:11726–11735. doi:10.1021/bi035137r

    Article  CAS  PubMed  Google Scholar 

  21. Murphy-Piedmonte DM, Crawford PA, Kirley TL (2005) Bacterial expression, folding, purification and characterization of soluble NTPDase5 (CD39L4) ecto-nucleotidase. Biochim Biophys Acta 1747:251–259. doi:10.1016/j.bbapap.2004.11.017

    CAS  PubMed  Google Scholar 

  22. Margis R, Borojevic R (1989) Retinoid-mediated induction of the fat-storing phenotype in a liver connective tissue cell line (GRX). Biochim Biophys Acta 1011:1–5

    Google Scholar 

  23. Andrade CM, Roesch GC, Wink MR, Guimaraes EL, Souza LF, Jardim FR, Guaragna RM, Bernard EA, Margis R, Borojevic R, Battastini AM, Guma FC (2008) Activity and expression of ecto-5′-nucleotidase/CD73 are increased during phenotype conversion of a hepatic stellate cell line. Life Sci 82:21–29. doi:10.1016/j.lfs.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  26. Vollmayer P, Koch M, Braun N, Heine P, Servos J, Israr E, Kegel B, Zimmermann H (2001) Multiple ecto-nucleotidases in PC12 cells: identification and cellular distribution after heterologous expression. J Neurochem 78:1019–1028

    Google Scholar 

  27. Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sevigny J, Battastini AM, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138:421–432

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Guimaraes EL, Franceschi MF, Grivicich I, Dal-Pizzol F, Moreira JC, Guaragna RM, Borojevic R, Margis R, Guma FC (2006) Relationship between oxidative stress levels and activation state on a hepatic stellate cell line. Liver Int 26:477–485. doi:10.1111/j.1478-3231.2006.01245.x

    Article  CAS  PubMed  Google Scholar 

  30. Vicente CP, Guaragna RM, Borojevic R (1997) Lipid metabolism during in vitro induction of the lipocyte phenotype in hepatic stellate cells. Mol Cell Biochem 168:31–39

    Google Scholar 

  31. Vicente CP, Fortuna VA, Margis R, Trugo L, Borojevic R (1998) Retinol uptake and metabolism, and cellular retinol binding protein expression in an in vitro model of hepatic stellate cells. Mol Cell Biochem 187:11–21

    Google Scholar 

  32. Andrade CM, Trindade VM, Cardoso CC, Ziulkoski AL, Trugo LC, Guaragna RM, Borojevic R, Guma FC (2003) Changes of sphingolipid species in the phenotype conversion from myofibroblasts to lipocytes in hepatic stellate cells. J Cell Biochem 88:533–544. doi:10.1002/jcb.10373

    Article  CAS  PubMed  Google Scholar 

  33. Guimaraes EL, Franceschi MF, Andrade CM, Guaragna RM, Borojevic R, Margis R, Bernard EA, Guma FC (2007) Hepatic stellate cell line modulates lipogenic transcription factors. Liver Int 27:1255–1264. doi:10.1111/j.1478-3231.2007.01578.x

    CAS  PubMed  Google Scholar 

  34. Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC (2008) The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. Front Biosci 13:2588–2603

    Article  PubMed  Google Scholar 

  35. Volonte C, D’Ambrosi N (2009) Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 276:318–329. doi:10.1111/j.1742-4658.2008.06793.x

    Article  CAS  PubMed  Google Scholar 

  36. Andrade CM, Wink MR, Margis R, Borojevic R, Battastini AM, Guma FC (2009) Activity and expression of ecto-nucleotide pyrophosphate/phosphodiesterases in a hepatic stellate cell line. Mol Cell Biochem 325:179–185. doi:10.1007/s11010-009-0032-6

    Article  CAS  PubMed  Google Scholar 

  37. Mulero JJ, Yeung G, Nelken ST, Ford JE (1999) CD39-L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem 274:20064–20067

    Google Scholar 

  38. Dranoff JA, Kruglov EA, Robson SC, Braun N, Zimmermann H, Sevigny J (2002) The ecto-nucleoside triphosphate diphosphohydrolase NTPDase2/CD39L1 is expressed in a novel functional compartment within the liver. Hepatology 36:1135–1144. doi:10.1053/jhep.2002.36823

    Article  CAS  PubMed  Google Scholar 

  39. Biederbick A, Kosan C, Kunz J, Elsasser HP (2000) First apyrase splice variants have different enzymatic properties. J Biol Chem 275:19018–19024. doi:10.1074/jbc.M001245200

    Article  CAS  PubMed  Google Scholar 

  40. Sevigny J, Robson SC, Waelkens E, Csizmadia E, Smith RN, Lemmens R (2000) Identification and characterization of a novel hepatic canalicular ATP diphosphohydrolase. J Biol Chem 275:5640–5647

    Google Scholar 

  41. Takemura S, Kawada N, Hirohashi K, Kinoshita H, Inoue M (1994) Nucleotide receptors in hepatic stellate cells of the rat. FEBS Lett 354:53–56

    Article  CAS  PubMed  Google Scholar 

  42. Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with alphav integrins to activate Go and induce cell migration. J Biol Chem 280:39050–39057. doi:10.1074/jbc.M504819200

    Article  CAS  PubMed  Google Scholar 

  43. Kaczmarek E, Koziak K, Sevigny J, Siegel JB, Anrather J, Beaudoin AR, Bach FH, Robson SC (1996) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122

    Google Scholar 

  44. Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signaling. Pflug Arch 452:552–562. doi:10.1007/s00424-006-0069-2

    Article  CAS  Google Scholar 

  45. Klawitter S, Hofmann LP, Pfeilschifter J, Huwiler A (2007) Extracellular nucleotides induce migration of renal mesangial cells by upregulating sphingosine kinase-1 expression and activity. Br J Pharmacol 150:271–280. doi:10.1038/sj.bjp.0706983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Carmem Gottfried for providing secondary goat anti-rabbit fluorescein conjugate. C. M. B. Andrade is recipient of a Ph.D. degree fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). A. M. O. Battastini, F. C. R. Guma, R. Borojevic, and R. Margis are recipients of research fellowships from CNPq. This study was supported by CNPq, FAPERJ, FAPERGS, and PROPESQ-UFRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima C. R. Guma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, C.M.B., Wink, M.R., Margis, R. et al. Changes in E-NTPDase 3 expression and extracellular nucleotide hydrolysis during the myofibroblast/lipocyte differentiation. Mol Cell Biochem 339, 79–87 (2010). https://doi.org/10.1007/s11010-009-0371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0371-3

Keywords

Navigation