Skip to main content
Log in

Aggregation of spectrin and PKCθ is an early hallmark of fludarabine/mitoxantrone/dexamethasone-induced apoptosis in Jurkat T and HL60 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It has been shown that changes in spectrin distribution in early apoptosis preceded changes in membrane asymmetry and phosphatidylserine (PS) exposure. PKCθ was associated with spectrin during these changes, suggesting a possible role of spectrin/PKCθ aggregation in regulation of early apoptotic events. Here we dissect this hypothesis using Jurkat T and HL60 cell lines as model systems. Immunofluorescent analysis of αIIβII spectrin arrangement in Jurkat T and HL60 cell lines revealed the redistribution of spectrin and PKCθ into a polar aggregate in early apoptosis induced by fludarabine/mitoxantrone/dexamethasone (FND). The appearance of an αIIβII spectrin fraction that was insoluble in a non-ionic detergent (1% Triton X-100) was observed concomitantly with spectrin aggregation. The changes were observed within 2 h after cell exposure to FND, and preceded PS exposure. The changes seem to be restricted to spectrin and not to other cytoskeletal proteins such as actin or vimentin. In studies of the mechanism of these changes, we found that (i) neither changes in apoptosis regulatory genes (e.g., Bcl-2 family proteins) nor changes in cytoskeleton-associated proteins were detected in gene expression profiling of HL60 cells after the first hour of FND treatment, (ii) caspase-3, -7, -8, and -10 had minor involvement in the early apoptotic rearrangement of spectrin/PKCθ, and (iii) spectrin aggregation was shown to be partially dependent on PKCθ activity. Our results indicate that spectrin/PKCθ aggregate formation is related to an early stage in drug-induced apoptosis and possibly may be regulated by PKCθ activity. These findings indicate that spectrin/PKCθ aggregation could be considered as a hallmark of early apoptosis and presents the potential to become a useful diagnostic tool for monitoring efficiency of chemotherapy as early as 24 h after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Matteis MA, Morrow JS (1998) The role of ankyrin and spectrin in membrane transport and domain formation. Curr Opin Cell Biol 10:542–549. doi:10.1016/S0955-0674(98)80071-9

    Article  PubMed  Google Scholar 

  2. De Matteis MA, Morrow JS (2000) Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113:2331–2343

    PubMed  Google Scholar 

  3. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    CAS  PubMed  Google Scholar 

  4. Djinovic-Carugo K, Gautel M, Ylanne J, Young P (2002) The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett 20:119–123. doi:10.1016/S0014-5793(01)03304-X

    Google Scholar 

  5. McMahon LW, Sangerman J, Goodman SR, Kumaresan K, Lambert MW (2001) Human alpha spectrin II and the FANCA, FANCC, and FANCG proteins bind to DNA containing psoralen interstrand cross-links. Biochemistry 40:7025–7034. doi:10.1021/bi002917g

    Article  CAS  PubMed  Google Scholar 

  6. Kevin G, Young RK (2005) Spectrin repeat proteins in the nucleus. Bioessays 27:144–152. doi:10.1002/bies.20177

    Article  CAS  Google Scholar 

  7. An X, Guo X, Sum H, Morrow J, Gratzer W, Mohandas N (2004) Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43:310–315. doi:10.1021/bi035653h

    Article  CAS  PubMed  Google Scholar 

  8. Hryniewicz-Jankowska A, Bok E, Dubielecka P, Chorzalska A, Diakowski W, Jezierski A, Lisowski M, Sikorski AF (2004) Mapping of an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine mono- and bi-layer binding site in erythroid beta-spectrin. Biochem J 382:677–685. doi:10.1042/BJ20040358

    Article  CAS  PubMed  Google Scholar 

  9. Slee EA, Adrain C, Martin SJ (2001) Executioner Caspase-3 -6 and -7 perform distinct non-redundant roles during the demolition phase of apoptosis. J Biol Chem 27:7320–7326. doi:101074/jbcM008363200

    Article  Google Scholar 

  10. Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA (2003) Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302:1560–1563. doi:101126/science1087621

    Article  CAS  PubMed  Google Scholar 

  11. Wang KKW (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26. doi:101016/S0166-2236(99)01479-4

    Article  PubMed  Google Scholar 

  12. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375. doi:101056/NEJMra022366

    Article  CAS  PubMed  Google Scholar 

  13. Czogalla A, Sikorski AF (2005) Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci 62:1913–1924. doi:101007/s00018-005-5097-0

    Article  CAS  PubMed  Google Scholar 

  14. Gourlay CW, Ayscough KR (2005) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583–589. doi:101038/nrm1682

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis [Epub ahead of print]

  16. Pothana S, Zheng D, Valery M, Michael D, Joel MW, Manjeri AV (1999) Apoptosis: definition mechanisms and relevance to disease. Am J Med 107:489–506. doi:101016/S0002-9343(99)00259-4

    Article  Google Scholar 

  17. Rotter BR, Kroviarski Y, Nicolas GI, Dhermy D, Lecomte M-C (2004) AlphaII-spectrin is an in vitro target for caspase-2 and its cleavage is regulated by calmodulin binding. Biochem J 378:161–168. doi:101042/BJ20030955

    Article  CAS  PubMed  Google Scholar 

  18. Wang KKW, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, Glantz SB, Morrow JS (1998) Simultaneous degradation of alpha II- and beta II spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497. doi:101074/jbc2733522490

    Article  CAS  PubMed  Google Scholar 

  19. Harris AS, Morrow JS (1988) Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. J Neurosci 8:2640–2651

    CAS  PubMed  Google Scholar 

  20. Martin SJ, O’Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 270:6425–6428. doi:101074/jbc270126425

    Article  CAS  PubMed  Google Scholar 

  21. Cryns VL, Bergeron L, Zhu H, Li H, Yuan J (1996) Specific cleavage of alpha -fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1beta -converting enzyme/Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease. J Biol Chem 271:31277–31282. doi:101074/jbc2714931277

    Article  CAS  PubMed  Google Scholar 

  22. Nath R, Raser KJ, Stafford D, Hajimohammadreza I, Posner A, Allen H, Talanian RV, Yuen P, Gilbertsen RB, Wang KK (1996) Non-erythroid alphaspectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319:683–690

    CAS  PubMed  Google Scholar 

  23. Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S (1996) Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271:31075–31085. doi:101074/jbc2714931075

    Article  CAS  PubMed  Google Scholar 

  24. Kouchi Z, Saido TC, Ohyama H, Maruta H, Suzuki K, Tanuma S (1997) The restrictive proteolysis of -fodrin to a 120 kDa fragment is not catalyzed by calpains during thymic apoptosis. Apoptosis 2:84–90. doi:101023/A:1026443926962

    Article  CAS  PubMed  Google Scholar 

  25. Janicke RU, Ng P, Sprengart ML, Porter AG (1998) Caspase-3 is required for alpha -Fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273:15540–15545. doi:101074/jbc2732515540

    Article  CAS  PubMed  Google Scholar 

  26. Brown TL, Patil S, Cianci CD, Morrow JS, Howe PH (1999) Transforming growth factor beta induces caspase 3-independent cleavage of alpha II spectrin (alpha -Fodrin) coincident with apoptosis. J Biol Chem 274:23256–23262. doi:101074/jbc2743323256

    Article  CAS  PubMed  Google Scholar 

  27. Sic L, Chan MPM (1999) Caspase and calpain substrates: Roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190. doi:101002/(SICI)1097-4547(19991001)58:1<167:AID-JNR16>30CO;2-K

    Article  Google Scholar 

  28. Lee A, Morrow JS, Fowler VM (2001) Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J Biol Chem 276:20735–20742. doi:101074/jbcM009723200

    Article  CAS  PubMed  Google Scholar 

  29. Williams ST, Smith AN, Cianci CD, Morrow JS, Brown TL (2003) Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosis. Apoptosis 8:353–361. doi:101023/A:1024168901003

    Article  CAS  PubMed  Google Scholar 

  30. Dubielecka PM, Jazwiec B, Potoczek S, Wróbel T, Miloszewska J, Haus O, Kuliczkowski K, Sikorski AF (2005) Changes in spectrin organisation in leukaemic and lymphoid cells upon chemotherapy. Biochem Pharmacol 69:73–85. doi:101016/jbcp200408031

    Article  CAS  PubMed  Google Scholar 

  31. Bellosillo B, Colomer D, Pons G, Gil J (1998) Mitoxantrone a topoisomerase II inhibitor induces apoptosis in B chronic lymphocytic leukaemia cells. Br J Haematol 100:142–146. doi:101046/j1365-2141199800520x

    Article  CAS  PubMed  Google Scholar 

  32. Kano Y, Akutsu M, Tsunoda S, Suzuki K, Ichikawa A, Furukawa Y, Bai L, Kon K (2000) In vitro cytotoxic effects of fludarabine (2-F-ara-A) in combination with commonly used antileukemic agents by isobologram analysis. Leukemia 14:379–388. doi:101038/sjleu2401684

    Article  CAS  PubMed  Google Scholar 

  33. Tse E, Chan JC, Pang A, Au WY, Leung AY, Lam CC, Kwong YL (2007) Fludarabine mitoxantrone and dexamethasone as first-line treatment for T-cell large granular lymphocyte leukemia. Leukemia 21:2225–2226. doi:101038/sjleu2404767

    Article  CAS  PubMed  Google Scholar 

  34. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:101016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  35. Waring P, Lambert D, Sjaarda A, Hurne A, Beaver J (1999) Increased cell surface exposure of phosphatidylserine on propidium iodide negative thymocytes undergoing death by necrosis. Cell Death Differ 6:624–637. doi:10.1038/sj.cdd.4400540

    Article  CAS  PubMed  Google Scholar 

  36. Schlegel RA, Callahan MK, Williamson P (2000) The central role of phosphatidylserine in the phagocytosis of apoptotic thymocytes. Ann N Y Acad Sci 926:217–225

    Article  CAS  PubMed  Google Scholar 

  37. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5:551–562. doi:10.1038/sj.cdd.4400404

    Article  CAS  PubMed  Google Scholar 

  38. Chan A, Weilbach FX, Toyka KV, Gold R (2005) Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin Exp Immunol 139:152–158. doi:101111/j1365-2249200502653x

    Article  CAS  PubMed  Google Scholar 

  39. Yu C, Mao X, Li WX (2005) Inhibition of the PI3K pathway sensitizes fludarabine-induced apoptosis in human leukemic cells through an inactivation of MAPKdependent pathway. Biochem Biophys Res Commun 331:391–397. doi:101016/jbbrc200503182

    Article  CAS  PubMed  Google Scholar 

  40. Silva KL, Vasconcellos DV, Castro ED, Coelho AM, Linden R, Maia RC (2006) Apoptotic effect of fludarabine is independent of expression of IAPs in B-cell chronic lymphocytic leukemia. Apoptosis 11:277–285. doi:101007/s10495-006-3560-5

    Article  CAS  PubMed  Google Scholar 

  41. Sharma S, Lichtenstein A (2008) Dexamethasone-induced apoptotic mechanisms in myeloma cells investigated by analysis of mutant glucocorticoid receptors. Blood 112:1338–1345. doi:101182/blood-2007-11-124156

    Article  CAS  PubMed  Google Scholar 

  42. Smart DJ, Halicka HD, Schmuck G, Traganos F, Darzynkiewicz Z, Williams GM (2008) Assessment of DNA double-strand breaks and gammaH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat Res 641:43–47. doi:101016/jmrfmmm200803005

    CAS  PubMed  Google Scholar 

  43. Sherwood SW, Kung AL, Roitelman J, Simoni RD, Schimke RT (1993) In vivo inhibition of cyclin B degradation and induction of cell-cycle arrest in mammalian cells by the neutral cysteine protease inhibitor N-acetylleucylleucylnorleucinal. PNAS 90:3353–3357. doi:101073/pnas9083353

    Article  CAS  PubMed  Google Scholar 

  44. Gomez-Angelats M, Bortner CD, Cidlowski JA (2000) Protein kinase C (PKC) inhibits Fas receptor-induced apoptosis through modulation of the loss of K1 and cell shrinkage: a role for PKC upstream of caspases. J Biol Chem 275:19609–19619. doi:101074/jbcM909563199

    Article  CAS  PubMed  Google Scholar 

  45. Datta R, Kojima H, Yoshida K, Kufe D (1997) Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta -dependent and required for SAPK activation. J Biol Chem 272:20317–20320. doi:101074/jbc2723320317

    Article  CAS  PubMed  Google Scholar 

  46. Frutos S, Moscat J, Diaz-Meco MT (1999) Cleavage of zetaPKC but not lambda/iotaPKC by caspase-3 during UV-induced apoptosis. J Biol Chem 274:10765–10770. doi:101074/jbc2741610765

    Article  CAS  PubMed  Google Scholar 

  47. Altman A, Villalba M (2003) Protein kinase C-theta (PKCtheta): it’s all about location location location. Immunol Rev 192:53–63. doi:101034/j1600-065X200300027x

    Article  CAS  PubMed  Google Scholar 

  48. Pandey SC (1998) Neuronal signaling systems and ethanol dependence. Mol Neurobiol 17:1–15. doi:101007/BF02802021

    Article  CAS  PubMed  Google Scholar 

  49. Isakov N, Altman A (2002) Protein kinase C(theta) in T cell activation. Annu Rev Immunol 20:761–794. doi:101146/annurevimmunol20100301064807

    Google Scholar 

  50. Brown SG, Thomas A, Dekker LV, Tinker A, Leaney JL (2005) PKC-delta sensitizes Kir31/32 channels to changes in membrane phospholipid levels after M3 receptor activation in HEK-293 cells. Am J Physiol Cell Physiol 289:C543–C556

    Article  CAS  PubMed  Google Scholar 

  51. Xia S, Forman LW, Faller DV (2007) Protein kinase C delta is required for survival of cells expressing activated p21RAS. J Biol Chem 282:13199–13210. doi:101074/jbcM610225200

    Article  CAS  PubMed  Google Scholar 

  52. Panaretakis T, Laane E, Pokrovskaja K, Björklund AC, Moustakas A, Zhivotovsky B, Heyman M, Shoshan MC, Grandér D (2005) Doxorubicin requires the sequential activation of caspase-2 protein kinase Cdelta and c-Jun NH2-terminal kinase to induce apoptosis. Mol Biol Cell 16:3821–3831. doi:101091/mbcE04-10-0862

    Article  CAS  PubMed  Google Scholar 

  53. Grzybek M, Chorzalska A, Bok E, Hryniewicz-Jankowska A, Czogalla A, Diakowski W, Sikorski AF (2006) Spectrin-phospholipid interactions: existence of multiple kinds of binding sites? Chem Phys Lipids 141:133–141. doi:101016/jchemphyslip200602008

    Article  CAS  PubMed  Google Scholar 

  54. Manno S, Takakuwa Y, Mohandas N (2002) Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. PNAS 99:1943–1948. doi:101073/pnas042688399

    Article  CAS  PubMed  Google Scholar 

  55. Barouch-Bentov R, Lemmens EE, Hu J, Janssen EM, Droin NM, Song J, Schoenberger SP, Altman A (2005) Protein kinase C-theta is an early survival factor required for differentiation of effector CD8+ T cells. J Immunol 175:5126–5134

    CAS  PubMed  Google Scholar 

  56. Hayashi K, Altman A (2007) Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res 55:537–544. doi:101016/jphrs200704009

    Article  CAS  PubMed  Google Scholar 

  57. Lerner A, Epstein PM (2006) Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 393:21–41. doi:101042/BJ20051368

    Article  CAS  PubMed  Google Scholar 

  58. Kiefer J, Okret S, Jondal M, McConkey DJ (1995) Functional glucocorticoid receptor expression is required for cAMP-mediated apoptosis in a human leukemic T cell line. J Immunol 155:4525–4528

    CAS  PubMed  Google Scholar 

  59. Wang XY, Ostberg JR, Repasky EA (1999) Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation. J Immunol 162:3378–3387

    CAS  PubMed  Google Scholar 

  60. Di YP, Repasky EA, Subjeck JR (1997) Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure. J Cell Physiol 172:44–54. doi:10.1002/(SICI)1097-4652(199707)172:1<44:AID-JCP5>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by KBN Grant No. 3P04C 097 25 and KBN Grant No. 2P04C 083 30, and by a grant from the Foundation for International Education. We thank Ewa Duszeńko, M.Sc., for her help with the microscopy and Dr. Joanna Miloszewska (Oncology Centre, M. Sklodowska-Curie Institute, Warsaw, Poland) for providing rabbit anti-PKCθ IgG’s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander F. Sikorski.

Additional information

Patrycja M. Dubielecka and Michał Grzybek have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1.

Morphology and nuclear integrity of Jurkat T (a) and HL60 (b) cells at the 4, 8, and 12 h of apoptosis. The same populations used for the evaluation of the quantitative time course of apoptosis presented in Fig. 1, were used for the preparations presented here. Images were acquired using an Axioskop 2 Zeiss microscope. Magnification ×630 (TIF 1532 kb)

Supplementary Fig. 2.

Thin-section electron micrographs of Triton X-100 extracted peripheral mononuclear blood lymphocytes. Freshly obtained (left) and apoptotic (right) cells were treated with 1% Triton X-100 buffer and pelleted as described in the Materials and methods section. N-nucleus, bar 2 μm. The matrix in the apoptotic cells is filled with some “mesh” (arrowheads), which is probably composed of spectrin subunits (TIF 230 kb)

Supplementary Fig. 3.

Immunofluorescent location of spectrin and PKCθ in Jurkat T (a, b) and HL60 (c, d) cells. Images were acquired after 4 h and after 8 h of incubation with FND after pre-treatment for 1 h with caspase-3, -7, -8, and -10 inhibitors, and calpain I and II inhibitors. Polyclonal rabbit anti-brain spectrin or rabbit anti-PKCθ were used as primary antibodies, and FITC-conjugated swine anti-rabbit IgG was used as the secondary antibody. Images were acquired using a Zeiss LSM. Magnification ×630 (DOC 4476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubielecka, P.M., Grzybek, M., Kolondra, A. et al. Aggregation of spectrin and PKCθ is an early hallmark of fludarabine/mitoxantrone/dexamethasone-induced apoptosis in Jurkat T and HL60 cells. Mol Cell Biochem 339, 63–77 (2010). https://doi.org/10.1007/s11010-009-0370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0370-4

Keywords

Navigation