Skip to main content
Log in

Effects of phenylalanine on the survival and neurite outgrowth of rat cortical neurons in primary cultures: possible involvement of brain-derived neurotrophic factor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is characterized by elevated levels of phenylalanine (Phe) in plasma and cerebrospinal fluid of PKU patients, leading to mental retardation. The developmental delay in the cerebral cortex is one of the characteristic pathologic changes in untreated phenylketonuria patients. This is thought to be due to the toxic effects of Phe and/or its metabolites; however, the underlying mechanisms are as yet unknown. In this study, using a model system in which cultured cortical neurons were induced with Phe, we observed that Phe inhibited the longest neurite outgrowth and induced the neuronal death. We further demonstrated that the expression of BDNF mRNA and protein was significantly decreased by Phe, together with a decrease in extracellular signal-regulated kinase (ERK) and Akt phosphorylation activity. There was no change in expression of TrkB mRNA and protein. Considering the important role of BDNF in normal brain development and function, these l-Phe-induced changes in BDNF in PKU brain may be a critical element of the neurological symptoms of PKU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kienzle Hagen ME, Pederzolli CD, Sgaravatti AM et al (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586(3):344–352

    CAS  PubMed  Google Scholar 

  2. Horster F, Schwab MA, Sauer SW et al (2006) Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res 59(4):544–548

    Article  PubMed  CAS  Google Scholar 

  3. Pietz J, Rupp A, Ebinger F et al (2003) Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 53:654–662

    Article  PubMed  Google Scholar 

  4. Pascucci T, Ventura R, Puglisi-Allegra S et al (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13:2561–2564

    Article  CAS  PubMed  Google Scholar 

  5. Shefer S, Tint GS, Jean-Guillaume D et al (2000) Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res 61(5):549–563

    Article  CAS  PubMed  Google Scholar 

  6. Dyer CA, Kendler A, Philibotte T et al (1996) Evidence for central nervous system glial cell plasticity in phenylketonuria. J Neuropathol Exp Neurol 55(7):795–814

    Article  CAS  PubMed  Google Scholar 

  7. Bauman ML, Kemper TL (1982) Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol 58(1):55–63

    Article  CAS  PubMed  Google Scholar 

  8. Martynyuk AE, Glushakov AV, Sumners C et al (2005) Impaired glutamatergic synaptic transmission in the PKU brain. Mol Genet Metab 86(S1):S34–S42

    Article  CAS  PubMed  Google Scholar 

  9. Glushakov AV, Glushakova O, Varshney M et al (2005) Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain 128(Pt 2):300–307

    CAS  PubMed  Google Scholar 

  10. Glushakov AV, Dennis DM, Sumners C et al (2003) L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res 72(1):116–124

    Article  CAS  PubMed  Google Scholar 

  11. Huttenlocher PR (2000) The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 159(S2):s102–s106

    Article  PubMed  Google Scholar 

  12. Zhang Y, Zhang H, Yuan X et al (2007) Differential effects of phenylalanine on Rac1, Cdc42, and RhoA expression and activity in cultured cortical neurons. Pediatr Res 62(1):8–13

    Article  CAS  PubMed  Google Scholar 

  13. Hartwig C, Gala A, Santerb R et al (2006) Elevated phenylalanine levels interfere with neurite outgrowth stimulated by the neuronal cell adhesion molecule L1 in vitro. FEBS Lett 580:3489–3492

    Article  CAS  PubMed  Google Scholar 

  14. Lu B, Chow A (1999) Neurotrophins and hippocampal synaptic transmission and plasticity. J Neurosci Res 58:76–87

    Article  CAS  PubMed  Google Scholar 

  15. Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23:639–645

    Article  CAS  PubMed  Google Scholar 

  16. Encinas M, Iglesias M, Llecha N et al (1999) Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 73(4):1409–1421

    Article  CAS  PubMed  Google Scholar 

  17. Almeida RD, Manadas BJ, Melo CV et al (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12(10):1329–1343

    Article  CAS  PubMed  Google Scholar 

  18. Micheli MR, Bova R, Laurenzi MA et al (2006) Modulation of BDNF and TrkB expression in rat hippocampus in response to acute neurotoxicity by diethyldithiocarbamate. Neurosci Lett 410(1):66–70

    Article  CAS  PubMed  Google Scholar 

  19. Ge Y, Belcher SM, Light KE (2004) Alterations of cerebellar mRNA specific for BDNF, p75NTR, and TrkB receptor isoforms occur within hours of ethanol administration to 4-day-old rat pups. Brain Res Dev Brain Res 151(1–2):99–109

    Article  CAS  PubMed  Google Scholar 

  20. Tapia-Arancibia L, Aliaga E, Silhol M et al (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59(1):201–220

    Article  CAS  PubMed  Google Scholar 

  21. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322

    Article  CAS  PubMed  Google Scholar 

  22. Ferrer I, Goutan E, Marín C et al (2000) Brain-derived neurotrophic factor in Huntington disease. Brain Res 866(1–2):257–261

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Gu XF (2005) A study of gene expression profiles of cultured embryonic rat neurons induced by phenylalanine. Metab Brain Dis 20:61–72

    Article  CAS  PubMed  Google Scholar 

  24. Strittmatter SM, Fishman MC, Zhu X-P (1994) Activated mutants of the alpha subunit of G(o) promote an increased number of neurites per cell. J Neurosci 14(4):2327–2338

    CAS  PubMed  Google Scholar 

  25. Kornguth S, Gilbert-Barness E, Langer E et al (1992) Golgi-Kopsch silver study of the brain of a patient with untreated phenylketonuria, seizures and cortical blindness. Am J Med Gen 44:443–448

    Article  CAS  Google Scholar 

  26. Cordero ME, Trejo M, Colombo M et al (1983) Histological maturation of the neocortex in phenylketonuric rats. Early Hum Dev 8:157–173

    Article  CAS  PubMed  Google Scholar 

  27. Gu XF, Yang XW, Chen RG (2000) Possible mechanism of nerve damage on hyperphenylalanine in embryonic rat. Am J Hum Genet 67:S281

    Google Scholar 

  28. Yang XW, Gu XF, Chen RG (2000) Toxic effects of phenylacetic acid to cultured rat cortical neurons. Chinese J Neurosci 16:330–332

    CAS  Google Scholar 

  29. Hannigan JH, Saunders DE, Treas LM (1999) Modification of alcohol-related neurodevelopmental disprders: in vitro and in vivo studies of neuroplasticity. In: Hannigan JH, Spear LP, Spear NE, Goodlett CR et al (eds) Alcohol and alcoholism. Lawrence Erlbaum Associates, Mahwah, New Jersey, pp 39–58

    Google Scholar 

  30. Sapolsky RM, Uno H, Rebert CS et al (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 10:2897–2902

    CAS  PubMed  Google Scholar 

  31. Lapchak PA, Hefti F (1992) BDNF and NGF treatment in lesioned rats: effects on cholinergic function and weight gain. NeuroReport 3:405–408

    Article  CAS  PubMed  Google Scholar 

  32. Middlemas DS, Lindberg RA, Hunter T (1991) TrkB, a neural receptor protein-tyrosine kinase: evidence for a fulllength and two truncated receptors. Mol Cell Biol 11:143–153

    CAS  PubMed  Google Scholar 

  33. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  34. Soto I, Rosenthal JJC, Blagburn JM (2006) Fibroblast growth factor 2 applied to the optic nerve after axotomy up-regulates BDNF and TrkB in ganglion cells by activating the ERK and PKA signaling pathways. J Neurochem 96:82–96

    Article  CAS  PubMed  Google Scholar 

  35. Davis MI (2008) Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 118(1):36–57

    Article  CAS  PubMed  Google Scholar 

  36. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15(4):791–803

    Article  CAS  PubMed  Google Scholar 

  37. McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cotical dendritic growth. Neuron 18:767–778

    Article  CAS  PubMed  Google Scholar 

  38. Horsh HW, Knuttgen A, Portbury SD et al (1999) Destabilization of cortical dendrites and spines by BDNF. Neuron 23:353–364

    Article  Google Scholar 

  39. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  40. Duarte AI, Santos P, Oliveira CR et al (2008) Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signaling pathways and changes in protein expression. Biochim Biophys Acta 1783(6):994–1002

    Article  CAS  PubMed  Google Scholar 

  41. Allan LA, Morrice N, Brady S et al (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5(7):647–654

    Article  CAS  PubMed  Google Scholar 

  42. Kao S, Jaiswal RK, Kolch W et al (2001) Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 276:18169–18177

    Article  CAS  PubMed  Google Scholar 

  43. Schmitt JM, Wayman GA, Nozaki N et al (2004) Calcium activation of ERK mediated by calmodulin kinase I. J Biol Chem 279(23):24064–24072

    Article  CAS  PubMed  Google Scholar 

  44. Yu YG, Tang FG, Pan J et al (2007) Effects of phenylalanine and its metabolites on cytoplasmic free calcium in cortical neurons. Neurochem Res 32(8):1292–1301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Hi-Tech Research and Development Program (2007AA02Z447), and Shanghai government foundations (Z07ZZ33, 2008ZD001, 08JC1416100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefan Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Gu, X., Lu, L. et al. Effects of phenylalanine on the survival and neurite outgrowth of rat cortical neurons in primary cultures: possible involvement of brain-derived neurotrophic factor. Mol Cell Biochem 339, 1–7 (2010). https://doi.org/10.1007/s11010-009-0364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0364-2

Keywords

Navigation