Skip to main content
Log in

Suppression of tumor suppressor Tsc2 and DNA repair glycosylase Nth1 during spontaneous liver tumorigenesis in Long-Evans Cinnamon rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic inflammation and oxidative stress are arguably associated with an increased risk of cancer. Certain diseases that are characterized by oxyradical overload, such as Wilson’s disease (WD), have also been associated with a higher risk of liver cancer. The Long-Evans Cinnamon (LEC) rat, an animal model for WD, is genetically predisposed to the spontaneous development of liver cancer and has been shown to be very useful for studying the mechanisms of inflammation-mediated spontaneous carcinogenesis. Endonuclease III (Nth1) plays a significant role in the removal of oxidative DNA damage. Nth1 and a tumor suppressor gene Tuberous sclerosis 2 (Tsc2) are bi-directionally regulated in humans, mice, and rats by a common minimal promoter containing two Ets-binding sites (EBSs). In this study, we examined the expression of Nth1 and Tsc2 genes during disease progression in the LEC rat liver. During the period of acute hepatitis (16–17 weeks), we observed decreased Nth1 and Tsc2 mRNA levels and a continued decrease of the Tsc2 gene in 24 weeks in LEC rats, while the effect was minimal in Long-Evans Agouti (LEA) rats. This reduction in the mRNA levels was due to the reduced binding of EBSs in the Nth1/Tsc2 promoter. Increase in protein oxidation (carbonyl content) during the same time period (16–24 weeks) may have an effect on the promoter binding of regulatory proteins and consequent decrease in Nth1 and Tsc2 gene expressions during tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LEC:

Long-Evans Cinnamon rat

LEA:

Long-Evans Agouti rat

Nth1:

Endonuclease III

ROS:

Reactive oxygen species

WD:

Wilson’s disease

OGG1:

8-Oxoguanine DNA glycosylase

References

  1. Oberley TD (2002) Oxidative damage and cancer. Am J Pathol 160:403–408

    CAS  PubMed  Google Scholar 

  2. Symons AM, King LJ (2003) Inflammation, reactive oxygen species and cytochrome P450. Inflammopharmacol 11:75–86

    Article  CAS  Google Scholar 

  3. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  Google Scholar 

  4. Hussain SP, Raja K, Amstad PA, Sawyer M et al (2000) Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci USA 97:12770–12775

    Article  CAS  PubMed  Google Scholar 

  5. Klein D, Lichtmannegger J, Finckh M et al (2003) Gene expression in the liver of Long-Evans Cinnamon rats during the development of hepatitis. Arch Toxicol 77:568–575

    Article  CAS  PubMed  Google Scholar 

  6. Samuele A, Mangiagalli A, Armentero MT et al (2005) Oxidative stress and pro-apoptotic conditions in a rodent model of Wilson’s disease. Biochim Biophys Acta 1741:325–330

    CAS  PubMed  Google Scholar 

  7. Kato J, Kobune M, Kohgo Y, Sugawara N et al (1996) Hepatic iron deprivation prevents spontaneous development of fulminant hepatitis and liver cancer in Long-Evans Cinnamon rats. J Clin Invest 98:923–929

    Article  CAS  PubMed  Google Scholar 

  8. Sternlieb I, Quintana N, Volenberg I et al (1995) An array of mitochondrial alterations in the hepatocytes of Long-Evans Cinnamon rats. Hepatology 22:1782–1787

    CAS  PubMed  Google Scholar 

  9. Choudhury S, Zhang Z, Frenkel K et al (2003) Evidence of alterations in base excision repair of oxidative DNA damage during spontaneous hepatocarcinogenesis in Long Evans cinnamon rats. Cancer Res 63:7704–7707

    CAS  PubMed  Google Scholar 

  10. DiDonato M, Sarkar B (1997) Copper transport and its alterations in Menkes and Wilson diseases. Biochim Biophys Acta 1360:3–16

    CAS  PubMed  Google Scholar 

  11. Ikeda S, Biswas T, Roy R et al (1998) Purification and characterization of human Nth1, a homologue of Escherichia coli endonuclease III. J Biol Chem 273:21585–21593

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Roy R (2001) Mutation at active site lysine 212 to arginine uncouples the glycosylase activity from the lyase activity of human endonuclease III (hNth1). Biochemistry 40:13617–13622

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Roy R (2000) Truncation of amino-terminal tail stimulates activity of human endonuclease III. J Mol Biol 321:265–276

    Article  Google Scholar 

  14. Hill J, Hazra TK, Izumi T et al (2001) Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res 29:430–438

    Article  CAS  PubMed  Google Scholar 

  15. van Slegtenhorst M, de Hoogt R, Hermans C et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808

    Article  PubMed  Google Scholar 

  16. The European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75: 1305–1315

    Google Scholar 

  17. Bjornsson J, Short MP, Kwiatkowski DJ, Henske EP (1996) Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am J Pathol 149:1201–1208

    CAS  PubMed  Google Scholar 

  18. Green AJ, Johnson PH, Yates JR (1994) The tuberous sclerosis gene on chromosome 9q34 acts as a growth suppressor. Hum Mol Genet 3:1833–1834

    Article  CAS  PubMed  Google Scholar 

  19. Henske EP, Neumann HP, Scheithauer BW, Herbst EW, Short MP, Kwiatkowski DJ (1995) Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosom Cancer 13:295–298

    Article  CAS  PubMed  Google Scholar 

  20. Carbonara C, Longa L, Grosso E et al (1996) Apparent preferential loss of heterozygosity at TSC2 over TSC1 chromosomal region in tuberous sclerosis hamartomas. Genes Chromosom Cancer 15:18–25

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi T, Urakami S, Hirayama Y et al (1997) Intragenic Tsc2 somatic mutations as Knudson’s second hit in spontaneous and chemically induced renal carcinomas in the Eker rat model. Jpn J Cancer Res 88:254–261

    CAS  PubMed  Google Scholar 

  22. Kubo Y, Mitani H, Hino O (1994) Allelic loss at the predisposing gene locus in spontaneous and chemically induced renal cell carcinomas in the Eker rat. Cancer Res 54:2633–2635

    CAS  PubMed  Google Scholar 

  23. Kobayashi T, Mitani H, Takahashi R et al (1997) Transgenic rescue from embryonic lethality and renal carcinogenesis in the Eker rat model by introduction of a wild-type Tsc2 gene. Proc Natl Acad Sci USA 94:3990–3993

    Article  CAS  PubMed  Google Scholar 

  24. Imai K, Sarker AH, Akiyama K, Ikeda S, Yao M, Tsutsui K, Shohmori T, Seki S (1998) Genomic structure and sequence of a human homologue (NTHL1/Nth1) of Escherichia coli endonuclease III with those of the adjacent parts of TSC2 and SLC9A3R2 genes. Gene 222:287–295

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda S, Mochizuki A, Sarker AH, Seki S (2000) Identification of functional elements in the bidirectional promoter of the mouse Nthl1 and Tsc2 genes. Biochem Biophys Res Commun 273(3):1063–1068

    Article  CAS  PubMed  Google Scholar 

  26. Honda S, Kobayashi T, Kajino K, Urakami S, Igawa M, Hino O (2003) Ets protein Elf-1 bidirectionally suppresses transcriptional activities of the tumor suppressor Tsc2 gene and the repair-related Nth1 gene. Mol Carcinog 37:122–129

    Article  CAS  PubMed  Google Scholar 

  27. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  28. Nair J, Sone H, Nagao M et al (1996) Copper-dependent formation of miscoding ethano-DNA adducts in the liver of Long Evans cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma. Cancer Res 56:1267–1271

    CAS  PubMed  Google Scholar 

  29. Levonen AL, Landar A, Ramachandran A et al (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378:373–382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Duanjun Tan and Catalin Marian in Prof. Peter Shield’s Laboratory for initial help in real-time PCR experiments. We also thank Mr. Cliff Chung for expert editorial help. The work was supported by National Institutes of Health grants RO1 CA 113447 (RR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajankila, S.P., Manthena, P.V., Adhikari, S. et al. Suppression of tumor suppressor Tsc2 and DNA repair glycosylase Nth1 during spontaneous liver tumorigenesis in Long-Evans Cinnamon rats. Mol Cell Biochem 338, 233–239 (2010). https://doi.org/10.1007/s11010-009-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0357-1

Keywords

Navigation