Skip to main content

Advertisement

Log in

Acute and/or chronic stress models modulate CuZnSOD and MnSOD protein expression in rat liver

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cellular protection against oxidative stress is afforded by the enzyme superoxide dismutase (SOD). In this study, the protein levels of copper–zinc SOD (CuZnSOD) in the cytosolic and nuclear fraction, manganese SOD (MnSOD) in the mitochondrial, and cytosolic fraction and cytochrome c (cyt c) in the liver of male rats exposed to 2 h of acute immobilization (IM) or Cold stress, 21 days chronic isolation or their combinations (chronic/acute stress) were examined. The serum corticosterone (CORT) level was measured, as an indicator of stress stimuli. Both acute stressors with elevated CORT levels caused a decrease of mitochondrial MnSOD, while acute IM resulted in redistribution of the CuZnSOD protein level between the cytosolic and nuclear fraction. Chronic isolation, during which the CORT level was close to control value, resulted in an increase of cytosolic CuZnSOD, whereas a decrease of MnSOD in mitochondrial and its corresponding increase in cytosol fraction was found. In both combined stress regimes, an increase of the CuZnSOD and MnSOD levels in the cytosolic fraction was recorded whereby increase of the CORT level was observed only in the chronic isolation followed by acute IM. The data indicate that acute and/or chronic stress models have different degrees of influence on serum CORT and SOD subcellular protein levels. Increased cytosolic CuZnSOD protein level under chronic isolation suggests that state of oxidative stress may also exist under CORT level similar to the basal value. The presence of MnSOD and cyt c in the cytosolic fraction could serve as useful parameters for mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McIntosh LJ, Hong KE, Sapolsky RM (1998) Glucocorticoids may alter anti-oxidant enzyme capacity in the brain: baseline studies. Brain Res 791:209–214. doi:10.1016/S0006-8993(98)00115-2

    Article  CAS  PubMed  Google Scholar 

  2. McIntosh LJ, Cortopassi KM, Sapolsky RM (1998) Glucocorticoids may alter antioxidant enzyme capacity in the brain: kainic acid studies. Brain Res 791:215–222. doi:10.1016/S0006-8993(98)00104-8

    Article  CAS  PubMed  Google Scholar 

  3. Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 89(21):10405–10409

    Article  CAS  PubMed  Google Scholar 

  4. Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393. doi:10.1074/jbc.M105395200

    Article  CAS  PubMed  Google Scholar 

  5. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    Article  CAS  PubMed  Google Scholar 

  6. Rosser BG, Gores GJ (1995) Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology 108:252–275. doi:10.1016/0016-5085(95)90032-2

    Article  CAS  PubMed  Google Scholar 

  7. Exton JH (1987) Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab Rev 3:163–183. doi:10.1002/dmr.5610030108

    Article  CAS  PubMed  Google Scholar 

  8. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 1:55–89. doi:10.1210/er.21.1.55

    Article  Google Scholar 

  9. Yoshioka T, Kawamura T, Meyrick BO, Beckman JK, Hoover RL, Yoshida H, Ichikawa I (1994) Induction of manganese superoxide dismutase by glucocorticoids in glomerular cells. Kidney Int 45:211–219. doi:10.1038/ki.1994.25

    Article  CAS  PubMed  Google Scholar 

  10. Kim HT, Kim YH, Nam JW, Lee HJ, Rho HM, Jung G (1994) Study of 5′-flanking region of human Cu/Zn superoxide dismutase. Biochem Biophys Res Commun 201:1526–1533. doi:10.1006/bbrc.1994.1877

    Article  CAS  PubMed  Google Scholar 

  11. Valentine J, Nick H (1994) Glucocorticoids repress basal and stimulated manganese superoxide dismutase levels in rat intestinal epithelial cells. Gastroenterology 107(6):1662–1670

    CAS  PubMed  Google Scholar 

  12. Antras-Ferry J, Maheo K, Morel F, Guillouzo A, Cillard P, Cillard J (1997) Dexamethasone differently modulates TNF-alpha- and IL-1beta-induced transcription of the hepatic Mn-superoxide dismutase gene. FEBS Lett 403:100–104. doi:10.1016/S0014-5793(97)00033-1

    Article  CAS  PubMed  Google Scholar 

  13. Garcia A, Marti O, Valles A, Zotto S, Armario A (2000) Recovery of the hypothalamic–pituitary–adrenal response to stress. Effect of stress intensity, stress duration and previous stress exposure. Neuroendocrinology 72:114–125. doi:10.1159/000054578

    Article  CAS  PubMed  Google Scholar 

  14. Mercier S, Frédéric Canini, Buguet A, Cespuglio R, Martin S, Bourdon L (2003) Behavioural changes after an acute stress: stressor and test types influences. Behav Brain Res 139:167–175. doi:10.1016/S0166-4328(02)00265-6

    Article  PubMed  Google Scholar 

  15. Perez-Nievas BG, García-Bueno B, Caso JR, Menchén L, Leza JC (2007) Corticosterone as a marker of susceptibility to oxidative/nitrosative cerebral damage after stress exposure in rats. Psychoneuroendocrinology 32:703–711. doi:10.1016/j.psyneuen.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  16. Dronjak S, Lj Gavrilović, Filipović D, Radojcić MB (2004) Immobilization and cold stress affect sympatho-adrenomedullary system and pituitary-adrenocortical axis of rats exposed to long-term isolation and crowding. Physiol Behav 81:409–415. doi:10.1016/j.physbeh.2004.01.011

    Article  CAS  PubMed  Google Scholar 

  17. Chourbaji S, Zacher C, Sanchis-Segura C, Spanagel R, Gass P (2005) Social and structural housing conditions influence the development of a depressive-like phenotype in the learned helplessness paradigm in male mice. Behav Brain Res 164:100–106. doi:10.1016/j.bbr.2005.06.003

    Article  PubMed  Google Scholar 

  18. Garzon J, del Rio J (1981) Hyperactivity induced in rats by long-term isolation: further studies on a new animal model for the detection of antidepressants. Eur J Pharmacol 74:287–294. doi:10.1016/0014-2999(81)90047-9

    Article  CAS  PubMed  Google Scholar 

  19. Kvetnansky R, Mikulaj L (1970) Adrenal and urinary catecholamines in rat during adaptation to repeated immobilization stress. Endocrinology 87:738–743. doi:10.1210/endo-87-4-738

    Article  CAS  PubMed  Google Scholar 

  20. Chauveau J, Moule Y, Rouiller C (1956) Isolation of pure and unaltered liver nuclei morphology and biochemical composition. Exp Cell Res 11:317–321. doi:10.1016/0014-4827(56)90107-0

    Article  CAS  PubMed  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AJ, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 123:265–275

    Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  23. Jin ZQ, Zhou HZ, Cecchini G, Gray MO, Karliner JS (2005) MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 288:2986–2994. doi:10.1152/ajpheart.01144.2004

    Article  Google Scholar 

  24. Merino JJ, Cordero MI, Sandi C (2000) Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity. Eur J Neurosci 12:3283–3290. doi:10.1046/j.1460-9568.2000.00191.x

    Article  CAS  PubMed  Google Scholar 

  25. Wren AM, Small CJ, Abbott CR, Jethwa PH, Kennedy AR, Murphy KG, Stanley SA, Zollner AN, Ghatei MA, Bloom SR (2002) Hypothalamic actions of neuromedin U. Endocrinology 143:4227–4234. doi:10.1210/en.2002-220308

    Article  CAS  PubMed  Google Scholar 

  26. Sahin E, Gumuşlu S (2004) Alterations in brain antioxidant status, protein oxidation and lipid peroxidation in response to different stress models. Behav Brain Res 155:241–248. doi:10.1016/j.bbr.2004.04.022

    Article  CAS  PubMed  Google Scholar 

  27. Lynch RE, Fridovich I (1978) Permeation of erythrocite stroma by superoxide radical. J Biol Chem 253:4697–4699

    CAS  PubMed  Google Scholar 

  28. Dugan LL, Choi DW (1994) Excitotoxicity, free radicals, and cell membrane changes. Ann Neurol 35:17–21. doi:10.1002/ana.410350707

    Article  Google Scholar 

  29. Wispé JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA (1989) Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim Biophys Acta 994:30–36. doi:10.1016/0167-4838(89)90058-7

    PubMed  Google Scholar 

  30. Holson RR, Scallet AC, Turner BB (1991) Isolation stress revisited: isolation-rearing effects depend on animal care methods. Physiol Behav 49:1107–1118. doi:10.1016/0031-9384(91)90338-O

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez MM, Aguado F, Sánchez-Toscano F, Saphier D (1998) Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo-pituitary-adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology 139:579–587. doi:10.1210/en.139.2.579

    Article  PubMed  Google Scholar 

  32. Malkesman O, Maayan R, Weizman A, Weller A (2006) Aggressive behavior and HPA axis hormones after social isolation in adult rats of two different genetic animal models for depression. Behav Brain Res 175:408–414. doi:10.1016/j.bbr.2006.09.017

    Article  CAS  PubMed  Google Scholar 

  33. Gamaro GD, Manoli LP, Torres IL, Silveira L, Dalmaz C (2003) Effects of chronic variate stress on feeding behaviour and on monoamine levels in different rat brain structures. Neurochem Int 42:107–114

    Article  CAS  PubMed  Google Scholar 

  34. Haque ME, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Apoptosis-inducing neurotoxicity of dopamine and its metabolities via reactive quinine generation in neuroblastoma cells. Biochem Biophys Acta 1619:39–52. doi:10.1016/S0304-4165(02)00440-3

    Google Scholar 

  35. Filipović D, LJ Gavrilović, Dronjak S, Radojčić BM (2005) Brain glucocorticoid receptor and heat shock protein 70 levels in rats exposed to acute, chronic or combined stress. Neuropsychobiology 51:107–114. doi:10.1159/000084168

    Article  PubMed  Google Scholar 

  36. Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548. doi:10.1210/er.22.4.502

    Article  CAS  PubMed  Google Scholar 

  37. Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, Chan PH (1999) Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 19:3414–3422

    CAS  PubMed  Google Scholar 

  38. Filipović D, Zlatković J, Pajović SB (2009) The effect of acute or/and chronic stress on the MnSOD protein expression in rat prefrontal cortex and hippocampus. Gen Physiol Biophys 28:53–61

    PubMed  Google Scholar 

  39. Filipović D, Pajović SB (2009) Differential regulation of CuZnSOD expression in rat brain by acute and/or chronic stress. Cell Mol Neurobiol 29:673–681. doi:10.1007/s10571-009-9375-5

    Article  PubMed  Google Scholar 

  40. Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:521–531. doi:10.1208/aapsj080362

    Article  Google Scholar 

  41. Yang JC, Cortopassi GA (1998) Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med 24:624–631. doi:10.1016/S0891-5849(97)00367-5

    Article  CAS  PubMed  Google Scholar 

  42. Cassarino DS, Parks JK, Parker WD Jr, Bennett JP Jr (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453(1):49–62. doi:10.1016/S0925-4439(98)00083-0

    CAS  PubMed  Google Scholar 

  43. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509:435–458. doi:10.1016/S0014-5793(01)03206-9

    Article  CAS  PubMed  Google Scholar 

  44. Cruthirds DL, Novak L, Akhi KM, Sanders PW, Thompson JA, MacMillan-Crow LA (2003) Mitochondrial targets of oxidative stress during renal ischemia/reperfusion. Arch Biochem Biophys 412:27–33. doi:10.1016/S0003-9861(03)00039-0

    Article  CAS  PubMed  Google Scholar 

  45. Tanikawa K, Torimura T (2006) Studies on oxidative stress in liver diseases: important future trends in liver research. Med Mol Morphol 39:22–27. doi:10.1007/s00795-006-0313-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the Ministry of Science and Technological Development of the Republic of Serbia, Grant No. 143044B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Filipović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipović, D., Mandić, L.M., Kanazir, D. et al. Acute and/or chronic stress models modulate CuZnSOD and MnSOD protein expression in rat liver. Mol Cell Biochem 338, 167–174 (2010). https://doi.org/10.1007/s11010-009-0350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0350-8

Keywords

Navigation