Skip to main content

Advertisement

Log in

Inhibition of C-reactive protein induced expression of matrix metalloproteinases by atorvastatin in THP-1 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The role of CRP as a mediator in atherosclerosis and inflammation is being investigated worldwide. In the present study, the effect of CRP on matrix metalloproteinases (MMP)-1, 2, 9, and their tissue inhibitor (TIMP-1) gene expression in THP-1 monocytic cell line was investigated. Specific mitogen activated protein (MAP) kinase (ERK, p38, and JNK) inhibitors were used to elucidate the signaling pathways involved. Effect of atorvastatin was determined in the presence of CRP on the expression of genes. Time and dose-dependent experiments were performed in the presence of CRP. The results showed that the treatment of THP-1 cells with 100 μg of CRP/ml/106 cells for 24 h enhanced the expression of MMPs and TIMP-1 genes significantly. CRP upregulated the expression of these genes via FcγRII and utilized ERK signaling pathway to transduce signals. Atorvastatin was able to significantly attenuate CRP-induced MMPs expression and augmented TIMP-1 gene expression significantly. In conclusion, CRP is not only a risk marker for vascular events, but also directly involved in the mechanisms leading to remodeling and destabilization of atherosclerotic plaque. Also, atorvastatin serves as potential therapeutic modality to curb these harmful events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Paffen E, de Maat MPK (2006) C-reactive protein in atherosclerosis: a causal factor? Cardiovasc Res 71:30–39

    Article  CAS  PubMed  Google Scholar 

  2. Packard RS, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54:24–38

    Article  CAS  PubMed  Google Scholar 

  3. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565

    Article  CAS  PubMed  Google Scholar 

  4. Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM (1993) C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 82:513–520

    CAS  PubMed  Google Scholar 

  5. Williams TN, Zhang CX, Game BA, He L, Huang Y (2004) C-reactive protein stimulates MMP-1 expression in U937 histiocytes through Fc[gamma]RII and extracellular signal-regulated kinase pathway: an implication of CRP involvement in plaque destabilization. Arterioscler Thromb Vasc Biol 24:61–66

    Article  CAS  PubMed  Google Scholar 

  6. Abe N, Osanai T, Fujiwara T, Kameda K, Matsunaga T, Okumura K (2006) C-reactive protein-induced up-regulation of extracellular matrix metalloproteinase inducer in macrophages: Inhibitory effect of fluvastatin. Life Sci 78:1021–1028

    Article  CAS  PubMed  Google Scholar 

  7. Nabata A, Kuroki M, Ueba H, Hashimoto S, Umemoto T, Wada H, Yasu T, Saito M, Momomura S, Kawakami M (2008) C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: implications for the destabilization of atherosclerotic plaque. Atherosclerosis 196:129–135

    Article  CAS  PubMed  Google Scholar 

  8. Mahajan N, Bahl A, Dhawan V (2009) C-reactive protein (CRP) up-regulates the expression of receptor for advanced glycation end products (RAGE) and its inflammatory ligand EN-RAGE in THP-1 cells: inhibitory effects of Atorvastatin. Int J Cardiol. doi:10.1016/j.ijcard.2009.01.008

  9. Pasceri V, Wu HD, Willerson JT (2004) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 101:235–238

    Google Scholar 

  10. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I (2002) Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 106:1439–1441

    Article  CAS  PubMed  Google Scholar 

  11. Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PWM, Li RK, Dhillon B, Mickle DAG (2002) Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 105:1890–1896

    Article  CAS  PubMed  Google Scholar 

  12. Wang CH, Li SH, Weisel RD, Fedak PWM, Dumont AS, Szmitko P, Ren-Ke Li, Mickle DAG, Verma S (2003) C-reactive protein up-regulates angiotensin type 1 receptors in vascular smooth muscle. Circulation 107:1783–1790

    Article  CAS  PubMed  Google Scholar 

  13. Ross R (1999) Atherosclerosis—an inflammatory disease. NEJM 340:115–126

    Article  CAS  PubMed  Google Scholar 

  14. Libby P, Aikawa M (2002) Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 8:1257–1262

    Article  CAS  PubMed  Google Scholar 

  15. Lee R (1997) The unstable atheroma. Arterioscler Thromb Vasc Biol 17:1859–1867

    CAS  PubMed  Google Scholar 

  16. Davies MJ (1998) Reactive oxygen species, metalloproteinases, and plaque stability. Circulation 97:2382–2383

    CAS  PubMed  Google Scholar 

  17. Galis ZS, Sukhova KG, Lark MAW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    Article  CAS  PubMed  Google Scholar 

  18. Cleutjiens JPM, Kandala JC, Guarda E, Guntak RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292

    Article  Google Scholar 

  19. Newby AC (2006) Do metalloproteinases destabilize vulnerable atherosclerotic plaques? Curr Opin Lipidol 17:556–561

    Article  CAS  PubMed  Google Scholar 

  20. Raffetto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–359

    Article  CAS  PubMed  Google Scholar 

  21. Loftus IM (2000) Increased matrix MMP-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke 31:40–47

    CAS  PubMed  Google Scholar 

  22. Kai H, Ikeda H, Yasukawa H, Kai M, Seki Y, Kuwahara F, Ueno T, Sugi K, Imaizumi T (1998) Peripheral blood of matrix metalloproteinases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32:368–372

    Article  CAS  PubMed  Google Scholar 

  23. Inokubo Y (2001) Plasma levels of matrix MMP-9 and TIMP-1 are increased in the coronary circulation in patients with acute coronary syndromes. Am Heart J 141:217

    Article  Google Scholar 

  24. Force T, Pombo CM, Avruch AJ (1996) Stress activated protein kinases in cardiovascular disease. Circ Res 78:947–953

    CAS  PubMed  Google Scholar 

  25. Kumar S, Boehm J, Lee JC (2003) p38 MAPKs: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  CAS  PubMed  Google Scholar 

  26. Muslin AJ (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci 115:203–218

    Article  CAS  PubMed  Google Scholar 

  27. Ballou SP, Lozanski G (1992) Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 4:361–368

    Article  CAS  PubMed  Google Scholar 

  28. Blum A, Shamburek R (2008) The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. doi:10.1016/j.atherosclerosis.2008.08.022

  29. Hu WL, Qian SB, Li JJ (2002) Decreased C-reactive protein-induced resistin production in human monocytes by simvastatin. Cytokine 40:201–206

    Article  Google Scholar 

  30. Kibayashi E, Urakaze M, Kobashi C, Kishida M, Takata M, Sato A, Yamazaki K, Kobayashi M (2005) Inhibitory effect of pitavastatin (NK-104) on the C-reactive protein-induced interleukin-8 production in human aortic endothelial cells. Clin Sci 108:515–521

    Article  CAS  PubMed  Google Scholar 

  31. Mahajan N, Dhawan V, Sharma G, Jain S, Kaul D (2008) Induction of inflammatory gene expression by THP-1 macrophages cultured in normocholesterolemic hypertensive sera and modulatory effects of green tea polyphenols. J Hum Hypertens 22:141–143

    Article  CAS  PubMed  Google Scholar 

  32. Han KH, Hong KH, Park JH, Ko J, Kang DH, Choi KJ, Hong MK, Park SW, Park SJ (2004) CRP promotes MCP-1 mediated chemotaxis through upregulating CCR2 expression in human monocytes. Circulation 109:2566–2571

    Article  CAS  PubMed  Google Scholar 

  33. Doronzo G, Russo I, Mattiello L, Trovati M, Anfossi G (2005) C-reactive protein increases matrix metalloproteinase-2 expression and activity in cultured human vascular smooth muscle cells. J Lab Clin Med 146:287–298

    Article  CAS  PubMed  Google Scholar 

  34. Major TC, Liang L, Lu X, Rosebury W, Bocan TMA (2002) Extracellular matrix metalloproteinase inducer (EMMPRIN) is induced upon monocyte differentiation and is expressed in human atheroma. Arterioscler Thromb Vasc Biol 22:1200–1207

    Article  CAS  PubMed  Google Scholar 

  35. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    Article  CAS  PubMed  Google Scholar 

  36. Yasojima K, Schwab C, Mc Geer EG, Mc Geer PL (2001) Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol 158:1039–1051

    CAS  PubMed  Google Scholar 

  37. Torzewski J, Torzewski M, Bowyer DE, Fröhlich M, Koenig W, Waltenberger J, Fitzsimmons C, Hombach V (1998) C-reactive protein frequently co-localizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol 18:1386–1392

    CAS  PubMed  Google Scholar 

  38. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Jacob VP, Andrew F, Virmani R (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24:1266–1271

    Article  CAS  PubMed  Google Scholar 

  39. Ratcliffe NR, Kennedy SM, Morganelli PM (2001) Immunocytochemical detection of FcγR in human atherosclerotic lesions. Immunol Lett 2001(77):169–174

    Article  Google Scholar 

  40. Ryu J, Lee CW, Shin JA, Park CS, Kim JJ, Park SJ, Han KH (2007) FcgammaRIIa mediates C-reactive protein-induced inflammatory responses of human vascular smooth muscle cells by activating NADPH oxidase 4. Cardiovasc Res 75:555–565

    Article  CAS  PubMed  Google Scholar 

  41. Devaraj S, Dasu MR, Singh U, Rao LVM, Jialal I (2008) C-reactive protein stimulates superoxide anion release and tissue factor activity in vivo. Atherosclerosis. doi:10.1016/j.atherosclerosis.2008.05.060

  42. Wu J, Stevenson MJ, Brown JM, Grunz EA, Strawn TL, Fay WP (2008) C-reactive protein enhances tissue factor expression by vascular smooth muscle cells: mechanisms and in vivo significance. Arterioscler Thromb Vasc Biol 28:698–704

    Article  CAS  PubMed  Google Scholar 

  43. Lin R, Liu J, Gan W, Yang G (2004) C-reactive protein-induced expression of CD40–CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 27:1537–1543

    Article  CAS  PubMed  Google Scholar 

  44. Ichida Y, Hasegawa G, Fukui M, Obayashi H, Ohta M, Fujinami A, Ohta K, Nakano K, Yoshikawa T, Nakamura N (2006) Effect of Atorvastatin on in vitro expression of resistin in adipocytes and monocytes/macrophages and effect of atorvastatin treatment on serum resistin levels in patients with type 2 diabetes. Pharmacol 76:34–39

    Article  CAS  Google Scholar 

  45. Qiu G, Hill JS (2007) Atorvastatin decreases lipoprotein lipase and endothelial lipase expression in human THP-1 macrophages. J Lipid Res 48:2112–2122

    Article  CAS  PubMed  Google Scholar 

  46. Takata M, Urakaze M, Temaru R, Yamazaki K, Nakamura N, Nobata Y, Kishida M, Sato A, Kobayashi M (2001) Pravastatin suppresses the interleukin-8 production induced by thrombin in human aortic endothelial cells cultured with high glucose by inhibiting the p44/42 mitogen activated protein kinase. Br J Pharmacol 134:753–762

    Article  CAS  PubMed  Google Scholar 

  47. Negre AP, Van Viiet AK, Van Erck M, Van Thiel GC, Van Leeuwen RE, Cohen LH (1997) Inhibition of proliferation of human smooth muscle cells by various HMG-CoA reductase inhibitors; comparison with other human cell types. Biochim Biophys Acta 1345:259–268

    Google Scholar 

  48. Kashiwagi Y, Haneda T, Osaki J, Miyata S, Kikuchi K (1998) Mechanical stretch activates a pathway linked to mevalonate metabolism in cultured neonatal rat heart cells. Hypertens Res 21:109–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Indian Council of Medical Research (ICMR), New Delhi for financial assistance. Nitin Mahajan was awarded Senior Research Fellowship by ICMR, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Dhawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, N., Dhawan, V. Inhibition of C-reactive protein induced expression of matrix metalloproteinases by atorvastatin in THP-1 cells. Mol Cell Biochem 338, 77–86 (2010). https://doi.org/10.1007/s11010-009-0340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0340-x

Keywords

Navigation