Skip to main content
Log in

Antitumor and antioxidant role of Chrysaora quinquecirrha (sea nettle) nematocyst venom peptide against ehrlich ascites carcinoma in Swiss Albino mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This investigation aims to evaluate the antitumor and antioxidant potential of Chrysaora quinquecirrha (sea nettle) nematocyst venom on Ehrlich ascites carcinoma (EAC) tumor model. Tumor was induced in mice by intraperitoneal injection of EAC cells. The antitumor effect of sea nettle nematocyst venom (SNV) peptide was evaluated by assessing in vitro cytotoxicity, survival time, hematological, and antioxidant parameters. Intraperitoneal injection of SNV peptide increased the survival time of the EAC-bearing mice. The SNV peptide brought back the altered levels of the hematological and antioxidant parameters in a dose dependent manner in EAC-bearing mice. The results were comparable to that of the result obtained from the animals treated with the standard drug 5-fluorouracil (20 mg/kg bw). Thus, present study revealed that SNV peptide possessed significant antitumor and antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27:1–11

    Article  CAS  PubMed  Google Scholar 

  2. Kovacic P, Jacintho JD (2001) Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8:396–773

    Google Scholar 

  3. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659. doi:10.1016/S0002-9343(00)00412-5

    Article  CAS  PubMed  Google Scholar 

  4. Parola M, Robino G (2001) Oxidative stress-related molecules and liver fibrosis. J Hepatol 35:297–306. doi:10.1016/S0168-8278(01)00142-8

    Article  CAS  PubMed  Google Scholar 

  5. Shahidi F (1997) Natural antioxidants: chemistry, health effects, and applications. AOCS Press, Urbana

    Google Scholar 

  6. Calmette A, Saenz A, Costil LCR (1933) Effects du venin de cobra sur les greffes cancereuses et sur le cancer spontane (adeno-carcinome) de la souris. Comptes Rendus de I’AcadeÂmie des Sciences 197:205–210

    Google Scholar 

  7. Balde A, Morodoh J, Mendrano EE, Bonaparte YP, Lustig ES, Rumi L (1988) Estudios tendientes a determinar las posibles propriedades antitumorales del veneno de cobra y del complejo crotoxina A y B. Medicina 48:337–344

    Google Scholar 

  8. Orsolic N, Sver L, Vestovsek S, Terzic S (2003) Basic, inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon 41:861–870. doi:10.1016/S0041-0101(03)00045-X

    Article  CAS  PubMed  Google Scholar 

  9. Abu-Sinna G, Esmat AY, Al-Zahaby AS, Soliman NA, Ibrahim TM (2003) Fractionation of Cerastes cerastes cerastes snake venom and the antitumor action of its lethal and non-lethal fractions. Toxicon 42:207–215. doi:10.1186/1477-3163-5-27

    Article  CAS  PubMed  Google Scholar 

  10. Ramanaiah M, Venkaiah B (1992) Characterization of superoxide dismutase from south Indian scorpion venom. Biochem Int 26:113–123

    CAS  PubMed  Google Scholar 

  11. Orduña-Novoa K, Segura-Puertas L, Sánchez-Rodríguez J, Meléndez A, Nava-Ruíz C, Rembao D, Santamaría A, Galván-Arzate S (2003) Possible antitumoral effect of the crude venom of Cassiopea xamachana (Cnidaria: Scyphozoa) on tumors of the central nervous system induced by N-Ethyl-N-Nitrosourea (ENU) in rats. Proc West Pharmacol Soc 46:85–87

    PubMed  Google Scholar 

  12. Yu H, Liu X, Xing R, Liu S, Guo Z, Wang P, Li C, Li P (2006) In vitro determination of antioxidant activity of proteins from jellyfish Rhopilema esculentum. Food Chem 95:123–130. doi:10.1016/j.foodchem.2004.12.025

    Article  CAS  Google Scholar 

  13. Burnett JW, Calton GJ (1976) A comparison of the toxicology of the nematocyst venom from sea nettle fishing and mesenteric tentacles. Toxicon 14:109–115

    Article  CAS  PubMed  Google Scholar 

  14. Burnett JW, Goldner R (1971) Some immunological aspects of sea nettle toxins. Toxicon 9:271–277

    Article  CAS  PubMed  Google Scholar 

  15. Neeman I, Calton GJ, Burnett JW (1980) An ultrastructural study of the cytologic effect of the venoms from the sea nettle (Chrysaora quinquecirrha) and Portuguese man-of-war (Physalia physalis) in cultured Chinese hamster ovary K-1 cells. Toxicon 18(4):95–501

    Article  Google Scholar 

  16. Sardar S, Gosh R, Mondal A, Chatterjee M (1993) Protective role of vanadium in the survival of hosts during the growth of a transplantable murine lymphoma and its profound effects on the rates and patterns of biotransformation. Neoplasm 40:27–30

    CAS  Google Scholar 

  17. Rice NE, Powell WA (1970) Observations on three species of jellyfishes from chesapeake bay with special reference to their toxins. I. Chrysaora (Dactylometra) quinquecirrha. Biol Bull 139:180–187. doi:10.2307/1540135

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  19. Andrews P (1964) Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J 91:222–233

    CAS  PubMed  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  21. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  22. Litchfield JT, Wilcoxon FA (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  23. Gupta M, Mazumder UK, Kumar RS, Kumar TS (2004) Antitumor activity and antioxident role of Bauhinia racemosa against Ehrlich ascites carcinoma in Swiss albino mice. Acta Pharmacol Sin 25:1070–1076

    CAS  PubMed  Google Scholar 

  24. Jiang ZY, Hunt JV, Wolf SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389. doi:10.1016/0003-2697(92)90122-N

    Article  CAS  PubMed  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. doi:10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  26. Kakkar P, Das B, Viswanathan PN (1984) A modified spectroscopic assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  27. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. doi:10.1016/0003-2697(72)90132-7

    Article  CAS  PubMed  Google Scholar 

  28. Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfydryl components. Anal Biochem 46:639–653. doi:10.1016/0003-2697(72)90335-1

    Article  CAS  PubMed  Google Scholar 

  29. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121. doi:10.1016/S0076-6879(84)05015-1

    Article  PubMed  Google Scholar 

  30. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S- transferases. Methods Enzymol 77:398–405. doi:10.1016/S0076-6879(81)77053-8

    Article  CAS  PubMed  Google Scholar 

  31. Prasad SB, Giri A (1994) Antitumor effect of cisplatin against murine ascites Dalton’s lymphoma. Indian J Exp Biol 32:155–162

    CAS  PubMed  Google Scholar 

  32. Clarkson BD, Burchenal JH (1965) Preliminary screening of antineoplastic drugs. Prog Clin Cancer 1:625–629

    Google Scholar 

  33. Yagi K (1991) Lipid peroxides and human diseases. Chem Phys Lip 45:337–351. doi:10.1016/0009-3084(87)90071-5

    Article  Google Scholar 

  34. Devasena T, Rajakrishnan KN, Menon VP (2002) Bis-1, 7-(2- hydroxyphenyl)-1, 6- diene-3, 5-dione (a curcumin analog) ameliorates DMH-induced hepatic oxidative stress during colon carcinogenesis. Pharmacol Res 46:39–45. doi:10.1016/S1043-6618(02)00043-9

    Article  CAS  PubMed  Google Scholar 

  35. Sinclair AJ, Barnett AH, Lunie J (1990) Free radical and auto-oxidant systems in health and disease. Br J Hosp Med 43:334–344

    CAS  PubMed  Google Scholar 

  36. Sun Y, Oberley LW, Elwell JH, Sierra Rivera E (1989) Antioxidant enzyme activities in normal and transformed mice liver cells. Int J Cancer 44:1028–1033. doi:10.1002/ijc.2910440615

    Article  CAS  PubMed  Google Scholar 

  37. Marklund SL, Westman NG, Lundgren E, Roos G (1982) Copper and zinc containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 42:1955–1961

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venugopal Padmanaban Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balamurugan, E., Reddy, B.V. & Menon, V.P. Antitumor and antioxidant role of Chrysaora quinquecirrha (sea nettle) nematocyst venom peptide against ehrlich ascites carcinoma in Swiss Albino mice. Mol Cell Biochem 338, 69–76 (2010). https://doi.org/10.1007/s11010-009-0339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0339-3

Keywords

Navigation