Abstract
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3–30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969–984, 2005); and of the Ca2+-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429–473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111–144, 2004). This article contains three parts. The first part is “Historical”; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3–30, 2002; Duda et al. in Peptides 26:969–984, 2005). The second part focuses on the “Ca2+-modulated ROS-GC membrane guanylate cyclase subfamily”. It is divided into two sections. Section “Historical” and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111–144, 2004). Section “Ca2+-modulated ROS-GC membrane guanylate cyclase subfamily” covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.






References
Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334
Sutherland EW, Rall TW (1960) The relation of adenosine-3′,5′-triphosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol Rev 12:265–299
Goldberg ND, Dietz SB, O’Toole AG (1969) Cyclic guanosine 3′,5′-monophosphate in mammalian tissues and urine. J Biol Chem 244:4458–4466
Ishikawa E, Ishikawa S, Davis JW, Sutherland EW (1969) Determination of guanosine 3′,5′-monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem 244:6371–6376
Goldberg ND, O’Dea RF, Haddox MK (1973) Cyclic GMP. Adv Cyclic Nucleotide Res 3:155–223
White AA, Aurbach GD (1969) Detection of guanyl cyclase in mammalian tissues. Biochim Biophys Acta 191:686–697
Schultz G, Böhme E, Munske K (1969) Guanyl cyclase. Determination of enzyme activity. Life Sci 8:1323–1332
Hardman JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine triphosphate. J Biol Chem 244:6363–6370
Kimura H, Murad F (1974) Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem 249:6910–6916
Kimura H, Murad F (1975) Subcellular localization of guanylate cyclase. Life Sci 17:837–843
Hardman JG, Sutherland EW (1965) A cyclic 3′,5′-nucleotide phosphodiesterase from heart with specificity for uridine 3′,5′-phosphate. J Biol Chem 240:3704–3705
Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem 46:823–896
Sharma RK, Jaiswal RK, Duda T (1988) Second messenger role of cyclic GMP in atrial natriuretic factor receptor mediated signal transduction: 180-kDa membrane guanylate cyclase, its coupling with atrial natriuretic factor receptor and its regulation by protein kinase C. In: Biological and molecular aspects of atrial factors. Alan R. Liss Inc., pp 77–96
Sharma RK, Marala RB, Paul AK (1988) Mediatory role of cyclic GMP in receptor mediated signal transduction: membrane guanylate cyclase and its coupling with atrial natriuretic factor receptor. In: Brenner BM, Laragh JH (eds) Advances in peptide research. American Society of Hypertension Symposium Series, vol II. Raven Press, New York, 61–77
Sharma RK, Duda T, Goraczniak R, Sitaramayya A (1997) Membrane guanylate cyclase signal transduction system. Indian J Biochem Biophys 34:40–49
George WJ, Polson JB, O’Toole AG, Goldberg ND (1970) Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci USA 66:398–403
Goldberg ND, Haddox MK, Nicol SE, Glass DB, Sanford CH, Kuehl FA Jr, Estensen R (1975) Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the Yin Yang hypothesis. Adv Cyclic Nucleotide Res 5:307–330
Goldberg ND, Haddox MK, Hartle DK, Hadden JW (1972) The biological role of cyclic 3′,5′-guanosine monophosphate. In: Krager S (ed) Pharmacology and the future of the man. Fifth international congress on pharmacology, vol 5, San Francisco, pp 146–169
Goldberg ND, Haddox MK, Dunham E, Lopez C, Hadden JW (1974) The Yin Yang hypothesis of biological control: opposing influences of cyclic GMP and cyclic AMP in the regulation of cell proliferation and other biological processes. In: Clarkson B, Beserga R (eds) Cold Spring Harbor symposium of the regulation of proliferation in animal cells. Cold Spring Harbor Laboratory, New York, pp 609–625
Goldberg ND, Haddox MK, Estensen R, White JG, Lopez C, Hadden JW (1974) Evidence for a dualism between cyclic GMP and cyclic AMP in the regulation of cell proliferation and other cellular processes. In: Brown W, Lichenstein L, Parker C (eds) Cyclic AMP. Cell growth and the immune response. Springer, New York, pp 247–262
Glinsmann WH, Hern EP (1969) Inactivation of rat liver glycogen synthetase by 3′,5′-cyclic nucleotides. Biochem Biophys Res Commun 36:931–936
Glinsmann WH, Hern EP, Linarelli LG, Farese RV (1969) Similarities between effects of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate on liver and adrenal metabolism. Endocrinology 85:711–719
Conn HO, Karl IS, Steiner A, Kipnis DM (1971) Studies of the mechanism of action of 3′,5′-cyclic nucleotides on hepatic glucose production. Biochem Biophys Res Commun 45:436–443
Exton JH, Hardman JG, Williams TF, Sutherland EW, Park CR (1971) Effects of guanosine 3′,5′-monophosphate on the perfused rat liver. J Biol Chem 246:2658–2664
Guder W, Wieland O (1970) The effect of cyclic nucleotides on glucose synthesis in isolated rat kidney tubules. Hoppe Seylers Z Physiol Chem 351:291–292
Friedmann N, Somlyo AV, Somlyo AP (1971) Cyclic adenosine and guanosine monophosphates and glucagon: effect on liver membrane potentials. Science 171:400–402
Somlyo AP, Somlyo AV, Friedmann N (1971) Cyclic adenosine monophosphate, cyclic guanosine monophosphate, and glucagon: effects on membrane potential and ion fluxes in the liver. Ann N Y Acad Sci 185:108–114
Sayers G, Beall RJ, Seelig S (1972) Isolated adrenal cells: adrenocorticotropic hormone, calcium, steroidogenesis, and cyclic adenosine monophosphate. Science 175:1131–1133
Kitabchi AE, Sharma RK (1971) Corticosteroidogenesis in isolated adrenal cells of rats. I. Effect of corticotropins and 3′,5′-cyclic nucleotides on corticosterone production. Endocrinology 88:1109–1116
Mahaffee D, Ney RL (1970) Effects of nucleotides possessing a 3′,5′-cyclic monophosphate on adrenal steroidogenesis. Metabolism 19:1104–1108
Brandwein H, Lewicki J, Murad F (1981) Production and characterization of monoclonal antibodies to soluble rat lung guanylate cyclase. Proc Natl Acad Sci USA 78:4241–4245
Wallach D, Pastan I (1976) Stimulation of membranous guanylate cyclase by concentrations of calcium that are in the physiological range. Biochem Biophys Res Commun 72:859–865
Murad F, Mittal CK, Arnold WP, Ichikara K, Braughlet M, El-Zayat M (1978) Properties and regulation of guanylate cyclase: activation by azide, nitro compounds, and hydroxyl radical and effects of heme containing proteins. In: Folco G, Paolotiie R (eds) Molecular biology and pharmacology of cyclic nucleotides. Elsevier, Amsterdam, pp 33–42
Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9:145–158
Mittal CK, Murad F (1977) Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3′,5′-monophosphate formation. Proc Natl Acad Sci USA 74:4360–4364
Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207
Mittal CK, Kimura H, Murad F (1977) Purification and properties of a protein required for sodium azide activation of guanylate cyclase. J Biol Chem 252:4384–4390
Waldman SA, Lewicki JA, Brandwein HJ, Murad F (1982) Partial purification and characterization of particulate guanylate cyclase from rat liver after solubilization with trypsin. J Cyclic Nucleotide Res 8:359–370
Arnold WP, Aldred R, Murad F (1977) Cigarette smoke activates guanylate cyclase and increases guanosine 3′,5′-monophosphate in tissues. Science 198:934–936
Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3:23–35
Katsuki S, Arnold WP, Murad F (1977) Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucleotide Res 3:239–247
Gill GN, McCune RW (1979) Guanosine 3′,5′-monophosphate-dependent protein kinase. Curr Top Cell Regul 15:1–45
Murad F, Arnold WP, Mittal CK, Braughler JM (1979) Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv Cyclic Nucleotide Res 11:175–204
Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17:429–473
Rall TW, Sutherland EW (1961) The regulatory role of adenosine-3′,5′-phosphate. Cold Spring Harb Symp Quant Biol 26:347–354
Haynes RC Jr, Berthet L (1957) Studies on the mechanism of action of the adrenocorticotropic hormone. J Biol Chem 225:115–124
Haynes RC Jr (1958) The activation of adrenal phosphorylase by the adrenocorticotropic hormone. J Biol Chem 233:1220–1222
Sayers G (1967) In: Gray CH (ed) Hormones in blood. Academic Press, New York and London, 169–194
Garren LD (1968) The mechanism of action of adrenocorticotropic hormone. Vitam Horm 26:119–145
Bronsome ED Jr (1968) Adrenal cortex. Annu Rev Physiol 30:171–212
Halkerston ID (1975) Cyclic AMP and adrenocortical function. Adv Cyclic Nucleotide Res 6:99–136
Sharma RK, Sawhney RS (1978) Metabolic regulation of steroidogenesis in isolated adrenal cell. Investigation of the adrenocorticotropic hormone, guanosine 3′,5′-monophosphate, and adenosine 3′,5′-monophosphate control step. Biochemistry 17:316–321
Robinson GA, Butcher RW, Sutherland EW (1971) Cyclic AMP. Academic Press, New York
Haynes RC Jr, Koritz SB, Peron FG (1959) Influence of adenosine 3′,5′-monophosphate on corticoid production by rat adrenal glands. J Biol Chem 234:1421–1423
Farese RV, Linarelli LG, Glinsmann WH, Ditzion BR, Paul MI, Pauk GA (1969) Persistence of the steroidogenic effect of adenosine-3′,5′-monophosphate in vitro: evidence for a third factor during the steroidogenic effect of ACTH. Endocrinology 85:867–874
Tsang CP, Péron FG (1971) Effects of adenosine-3′,5′-monophosphate on steroidogenesis and glycolysis in the rat adrenal gland incubated in vitro. Steroids 17:453–469
Rivkin I, Chasin M (1971) Nucleotide specificity of the steroidogenic response of rat adrenal cell suspensions prepared by collagenase digestion. Endocrinology 88:664–670
Scarpa A, Baldassare J, Inesi G (1972) The effect of calcium ionophores on fragmented sarcoplasmic reticulum. J Gen Physiol 60:735–749
Sharma RK, Hashimoto K, Kitabchi AE (1972) Steroidogenesis in isolated adrenal cells of rat. 3. Morphological and biochemical correlation of cholesterol and cholesterol ester content in ACTH and N6-2′-O-dibutyryl-adenosine-3′,5′-monophosphate activated adrenal cells. Endocrinology 91:994–1003
Sharma RK, Ahmed NK, Sutliff LS (1974) Brush JS. Metabolic regulation of steroidogenesis in isolated adrenal cells of the rat. ACTH regulation of cGMP and cAMP levels and steroidogenesis. FEBS Lett 45:107–110
Sharma RK, Ahmed NK, Shanker G (1976) Metabolic regulation of steroidogenesis in isolated adrenal cells of rat. Relationship of adrenocorticotropin-, adenosine 3′,5′-monophosphate-and guanosine 3′,5′-monophosphate-stimulated steroidogenesis with the activation of protein kinase. Eur J Biochem 70:427–433
Perchellet JP, Shanker G, Sharma R (1978) Regulatory role of guanosine 3′,5′-monophosphate in adrenocorticotropin hormone-induced steroidogenesis. Science 199:311–312
Sharma RK, Hashimoto K (1972) Ultrastructural studies and metabolic regulation of isolated adrenocortical carcinoma cells of rat. Cancer Res 32:666–674
Harrington CA, Fenimore DC, Farmer RW (1978) Regulation of adrenocortical steroidogenesis by cyclic 3′,5′-guanosine monophosphate in isolated rat adrenal cells. Biochem Biophys Res Commun 85:55–61
Neri G, Gambino AM, Mazzocchi G, Nussdorfer GG (1978) Effects of chronic treatment with ACTH on the intracellular levels of cyclic-AMP and cyclic-GMP in the rat adrenal cortex. Experientia 34:815–817
Sharma RK (1973) Metabolic regulation of steroidogenesis in adrenocortical carcinoma cells of rat. Effect of adrenocorticotropin and adenosine cyclic 3′,5′-monophosphate on corticosteroidogenesis. Eur J Biochem 32:506–512
Haksar A, Péron FG (1973) The role of calcium in the steroidogenic response of rat adrenal cells to adrenocorticotropic hormone. Biochim Biophys Acta 313:363–371
Bowyer F, Kitabchi AE (1974) Dual role of calcium in steroidogenesis in the isolated adrenal cell of rat. Biochem Biophys Res Commun 57:100–105
Perchellet JP, Sharma RK (1979) Mediatory role of calcium and guanosine 3′,5′-monophosphate in adrenocorticotropin-induced steroidogenesis by adrenal cells. Science 203:1259–1261
Rasmussen H (1981) Calcium and cyclic AMP as synarchic messengers. Wiley, New York
Kitabchi AE, Wilson DB, Sharma RK (1971) Steroidogenesis in isolated adrenal cells of rat. II. Effect of caffeine on ACTH and cyclic nucleotide-induced steroidogenesis and its relation to cyclic nucleotide phosphodiesterase (PDE). Biochem Biophys Res Commun 44:898–904
Hayashi K, Sala G, Catt K, Dufau ML (1979) Regulation of steroidogenesis by adrenocorticotropic hormone in isolated adrenal cells. The intermediate role of cyclic nucleotides. J Biol Chem 254:6678–6683
Sayers G, Ma RM, Giordano ND (1978) Isolated adrenal cells: corticosterone production in response. Proc Soc Exp Biol Med 136:619–622
Laychock SG, Hardman JG (1978) Effects of sodium nitroprusside and ascorbic acid on rat adrenocortical cell cGMP levels and steroidogenesis. J Cyclic Nucleotide Res 4:335–344
Ahrens H, Paul AK, Kuroda Y, Sharma RK (1982) Adrenocortical cyclic GMP-dependent protein kinase: purification, characterization, and modification of its activity by calmodulin, and its relationship with steroidogenesis. Arch Biochem Biophys 215:597–609
Nambi P, Aiyar NV, Sharma RK (1982) Adrenocorticotropin-dependent particulate guanylate cyclase in rat adrenal and adrenocortical carcinoma: comparison of its properties with soluble guanylate cycles and its relationship with ACTH-induced steroidogenesis. Arch Biochem Biophys 217:638–646
Nambi P, Sharma RK (1981) Adrenocorticotropic hormone-responsive guanylate cyclase in the particulate fraction of rat adrenal glands. Endocrinology 108:2025–2027
Nambi P, Sharma RK (1981) Demonstration of ACTH-sensitive particulate guanylate cyclase in adrenocortical carcinoma. Biochem Biophys Res Commun 100:508–514
Sharma RK, Marala RB, Duda T (1989) Purification and characterization of the 180-kDa membrane guanylate cyclase containing atrial natriuretic factor receptor from rat adrenal gland and its regulation by protein kinase C. Steroids 53:437–460
Anglard P, Zwiller J, Vincendon G, Louis JC (1985) Regulation of cyclic AMP and cyclic GMP levels by adrenocorticotropic hormone in cultured neurons. Biochem Biophys Res Commun 133:286–292
Waldman SA, Rapoport RM, Murad F (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259:14332–14334
Hamet P, Tremblay J, Pang SC, Garcia R, Thibault G, Gutkowska J, Cantin M, Genest J (1984) Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Commun 123:515–527
Paul AK (1986) Particulate guanylate cyclase from adrenocortical carcinoma 494. Purification, biochemical and immunological characterization. Doctoral Thesis, University of Tennessee
Paul AK, Marala RB, Jaiswal RK, Sharma RK (1987) Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235:1224–1226
Sharma RK (1988) Guanylate cyclase and the atrial natriuretic factor receptor. Response to Waldman SA, Leitman DC, Anderson J, Murad F. Science 240:805–806
Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823
Sharma RK (2002) Evolution of membrane guanylate cyclase transduction system. Mol Cell Biochem 230:30–30
Takayanagi R, Inagami T, Snajdar RM, Imada T, Tamura M, Misono KS (1987) Two distinct forms of receptors for atrial natriuretic factor in bovine adrenocortical cells. Purification, ligand binding, and peptide mapping. J Biol Chem 262:12104–12113
Meloche S, McNicoll N, Liu B, Ong H, De Léan A (1988) Atrial natriuretic factor R1 receptor from bovine adrenal zona glomerulosa: purification, characterization, and modulation by amyloidal. Biochemistry 27:8151–8158
Marala RB, Sharma RK (1988) Characterization of atrial-natriuretic-factor-receptor-coupled membrane guanylate cyclase from rat and mouse testes. Biochem J 251:301–304
Ballermann BJ, Marala RB, Sharma RK (1988) Characterization and regulation by protein kinase C of renal glomerular atrial natriuretic peptide receptor-coupled guanylate cyclase. Biochem Biophys Res Commun 157:755–761
de Bold AJ (1982) Atrial natriuretic factor of the rat heart. Studies on isolation and properties. Proc Soc Exp Biol Med 170:133–138
Cantin M, Genest J (1985) The heart, an endocrine gland. Ann Endocrinol (Paris) 46:219–228
Schwartz D, Geller DM, Manning PT, Siegel NR, Fok KF, Smith CE, Needleman P (1985) Ser-Leu-Arg-Arg-atriopeptin III: the major circulating form of atrial peptide. Science 229:397–400
de Bold AJ (1986) Atrial natriuretic factor: an overview. Fed Proc 45:2081–2085
Atlas SA, Laragh JH (1986) Atrial natriuretic peptide: a new factor in hormonal control of blood pressure and electrolyte homeostasis. Annu Rev Med 37:397–414
Atarashi K, Mulrow PJ, Franco-Saenz R, Snajdar R, Rapp J (1984) Inhibition of aldosterone production by an atrial extract. Science 224:992–994
Chartier L, Schiffrin E, Thibault G, Garcia R (1984) Atrial natriuretic factor inhibits the stimulation of aldosterone secretion by angiotensin II, ACTH and potassium in vitro and angiotensin II-induced steroidogenesis in vivo. Endocrinology 115:2026–2028
De Léan A, Racz K, Gutkowska J, Nguyen TT, Cantin M, Genest J (1984) Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steroidogenesis in cultured bovine adrenal cells. Endocrinology 115:1636–1638
Kudo T, Baird A (1984) Inhibition of aldosterone production in the adrenal glomerulosa by atrial natriuretic factor. Nature 312:756–757
Pandey KN, Kovacs WJ, Inagami T (1985) The inhibition of progesterone secretion and the regulation of cyclic nucleotides by atrial natriuretic factor in gonadotropin responsive murine Leydig tumor cells. Biochem Biophys Res Commun 133:800–806
Nakamura M, Odaguchi K, Shimizu T, Nakamura Y, Okamoto M (1985) Stimulation of corticosterone production by atrial natriuretic polypeptide in hypophysectomized rats. Eur J Pharmacol 117:285–286
Jaiswal N, Paul AK, Jaiswal RK, Sharma RK (1986) Atrial natriuretic factor regulation of cyclic GMP levels and steroidogenesis in isolated fasciculata cells of rat adrenal cortex. FEBS Lett 199:121–124
Bex F, Corbin A (1985) Atrial natriuretic factor stimulates testosterone production by mouse interstitial cells. Eur J Pharmacol 115:125–126
Mukhopadhyay AK, Schumacher M, Leidenberger FA (1986) Steroidogenic effect of atrial natriuretic factor in isolated mouse Leydig cells is mediated by cyclic GMP. Biochem J 239:463–467
Pandey KN, Inagami T, Misono KS (1986) Atrial natriuretic factor receptor on cultured Leydig tumor cells: ligand binding and photoaffinity labeling. Biochemistry 25:8467–8472
Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83
Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV (1989) Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8:1377–1384
Pandey KN, Singh S (1990) Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem 265:12342–12348
Duda T, Goraczniak RM, Sharma RK (1991) Site-directed mutational analysis of a membrane guanylate cyclase cDNA reveals the atrial natriuretic factor signaling site. Proc Natl Acad Sci USA 88:7882–7886
Marala R, Duda T, Goraczniak RM, Sharma RK (1992) Genetically tailored atrial natriuretic factor-dependent guanylate cyclase. Immunological and functional identity with 180 kDa membrane guanylate cyclase and ATP signaling site. FEBS Lett 296:254–258
Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL (1989) The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162
Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341:68–72
Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89:947–951
Wiegand RC, Kato J, Currie MG (1992) Rat guanylin cDNA: characterization of the precursor of an endogenous activator of intestinal guanylate cyclase. Biochem Biophys Res Commun 185:812–817
de Sauvage FJ, Camerato TR, Goeddel DV (1991) Primary structure and functional expression of the human receptor for Escherichia coli heat-stable enterotoxin. J Biol Chem 266:17912–17918
Singh S, Singh G, Heim JM, Gerzer R (1991) Isolation and expression of a guanylate cyclase-coupled heat stable enterotoxin receptor cDNA from a human colonic cell line. Biochem Biophys Res Commun 179:1455–1463
Hamra FK, Forte LR, Eber SL, Pidhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA, Fok KF, Smith CE, Duffin KL, Siegel NR, Currie MG (1993) Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 90:10464–10468
Khare S, Wilson D, Wali RK, Tien XY, Bissonnette M, Niedziela SM, Bolt MJ, Sitrin MD, Brasitus TA (1994) Guanylin activates rat colonic particulate guanylate cyclase. Biochem Biophys Res Commun 203:1432–1437
Sharma RK, Duda T, Sitaramayya A (1994) Plasma membrane guanylate cyclase is a multimodule transduction system: Minireview. Amino Acids 7:117–127
Sharma RK, Duda T (1997) Plasma membrane guanylate cyclase. A multimodule transduction system. Adv Exp Med Biol 407:271–279
Drewett JG, Garbers DL (1994) The family of guanylyl cyclase receptors and their ligands. Endocr Rev 15:135–162
Garbers DL, Koesling D, Schultz G (1994) Guanylyl cyclase receptors. Mol Biol Cell 5:1–5
Duda T, Goraczniak RM, Sharma RK (1994) Glutamic acid-332 residue of the type C natriuretic peptide receptor guanylate cyclase is important for signaling. Biochemistry 33:7430–7433
Duda T, Goraczniak RM, Sharma RK (1995) Single amino acid residue-linked signaling shifts in the transduction activities of atrial and type C natriuretic factor receptor guanylate cyclases. Biochem Biophys Res Commun 212:1046–1053
Ogawa H, Qiu Y, Ogata CM, Misono KS (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem 279:28625–28631
Kurose H, Inagami T, Ui M (1987) Participation of adenosine 5′-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett 219:375–379
Chang CH, Kohse KP, Chang B, Hirata M, Jiang B, Douglas JE, Murad F (1990) Characterization of ATP-stimulated guanylate cyclase activation in rat lung membranes. Biochim Biophys Acta 1052:159–165
Chinkers M, Garbers DL (1989) The protein kinase domain of the ANP receptor is required for signaling. Science 245:1392–1394
Marala RB, Sitaramayya A, Sharma RK (1991) Dual regulation of atrial natriuretic factor-dependent guanylate cyclase activity by ATP. FEBS Lett 281:73–76
Chinkers M, Singh S, Garbers DL (1991) Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 266:4088–4093
Duda T, Goraczniak RM, Sitaramayya A, Sharma RK (1993) Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylate cyclase. Biochemistry 32:1391–1395
Goraczniak RM, Duda T, Sharma RK (1992) A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J 282:533–537
Duda T, Sharma RK (2005) Two membrane juxtaposed signaling modules in ANF-RGC are interlocked. Biochem Biophys Res Commun 332:149–156
Duda T, Venkataraman V, Ravichandran S, Sharma RK (2005) ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides 26:969–984
Sharma RK, Yadav P, Duda T (2001) Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 79:682–691
Wierenga RK, Hol WG (1983) Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302:842–844
Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
Duda T, Goraczniak RM, Sharma RK (1993) Core sequence of ATP regulatory module in receptor guanylate cyclases. FEBS Lett 315:143–148
Duda T, Goraczniak RM, Sharma RK (1993) The glycine residue of ATP regulatory module in receptor guanylate cyclases that is essential in natriuretic factor signaling. FEBS Lett 335:309–314
Larose L, McNicoll N, Ong H, De Léan A (1991) Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions. Biochemistry 30:990–995
Jewett JR, Koller KJ, Goeddel DV, Lowe DG (1993) Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J 12:769–777
Duda T, Sharma RK (1995) ATP bimodal switch that regulates the ligand binding and signal transduction activities of the atrial natriuretic factor receptor guanylate cyclase. Biochem Biophys Res Commun 209:286–292
Duda T, Sharma RK (1995) ATP modulation of the ligand binding and signal transduction activities of the type C natriuretic peptide receptor guanylate cyclase. Mol Cell Biochem 152:179–183
Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ, Chinkers M, Goeddel DV, Garbers DL (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334:708–712
Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK (2000) Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 214(1–2):7–14 (erratum in Mol Cell Biochem 217:165–172)
Potter LR, Hunter T (1998) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 273:15533–15539
Potter LR, Hunter T (1999) A constitutively “phosphorylated” guanylyl cyclase-linked atrial natriuretic peptide receptor mutant is resistant to desensitization. Mol Biol Cell 10:1811–1820
Potter LR, Hunter T (1999) Identification and characterization of the phosphorylation sites of the guanylyl cyclase-linked natriuretic peptide receptors A and B. Methods 19:506–520
Duda T, Sharma RK (1990) Regulation of guanylate cyclase activity by atrial natriuretic factor and protein kinase C. Mol Cell Biochem 93:179–184
Larose L, Rondeau JJ, Ong H, De Lean A (1992) Phosphorylation of atrial natriuretic factor R1 receptor by serine/threonine protein kinases: evidences for receptor regulation. Mol Cell Biochem 115:203–211
Foster DC, Garbers DL (1998) Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. J Biol Chem 273:16311–16318
Perchellet JP, Sharma RK (1980) Ectopic alpha-adrenergic mediated accumulation of guanosine 3′,5′-monophosphate in isolated adrenocortical carcinoma cells. Endocrinology 106:1589–1593
Shanker G, Sharma RK (1980) Characterization of ectopic alpha-adrenergic binding receptors of adrenocortical carcinoma cells. Endocrinology 106:1594–1598
Chalberg SC, Duda T, Rhine JA, Sharma RK (1990) Molecular cloning, sequencing and expression of an alpha 2-adrenergic receptor complementary DNA from rat brain. Mol Cell Biochem 97:161–172
Wypijewski K, Duda T, Sharma RK (1995) Structural, genetic and pharmacological identity of the rat alpha 2-adrenergic receptor subtype cA2–47 and its molecular characterization in rat adrenal, adrenocortical carcinoma and bovine retina. Mol Cell Biochem 144:181–190
Venkataraman V, Duda T, Galoian K, Sharma RK (1996) Molecular and pharmacological identity of the alpha 2D-adrenergic receptor subtype in bovine retina and its photoreceptors. Mol Cell Biochem 159:129–138
Jaiswal N, Sharma RK (1986) Dual regulation of adenylate cyclase and guanylate cyclase: alpha 2-adrenergic signal transduction in adrenocortical carcinoma cells. Arch Biochem Biophys 249:616–619
Sharma RK (1990) Two operational modes of transmembrane migration og cyclic GMP signal pathway. In: Prasad KN, Meyskens FL Jr (eds) Nutrients and cancer prevention. Humana Press, Englewood Clifts, pp 3–18
Cohen AI, Hall IA, Ferrendelli JA (1978) Calcium and cyclic nucleotide regulation in incubated mouse retinas. J Gen Physiol 71:595–612
Cote RH, Biernbaum MS, Nicol GD, Bownds MD (1984) Light-induced decreases in cGMP concentration precede changes in membrane permeability in frog rod photoreceptors. J Biol Chem 259:9635–9641
Lolley RN, Racz E (1982) Calcium modulation of cyclic GMP synthesis in rat visual cells. Vision Res 22(12):1481–1486
Woodruff ML, Bownds MD (1979) Amplitude, kinetics, and reversibility of a light-induced decrease in guanosine 3′,5′-cyclic monophosphate in frog photoreceptor membranes. J Gen Physiol 73:629–653
Pugh EN Jr, Cobbs WH (1986) Visual transduction in vertebrate rods and cones: a tale of two transmitters, calcium and cyclic GMP. Vision Res 26:1613–1643
Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev Neurosci 9:87–119
Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313
Kaupp UB, Niidome T, Tanabe T, Terada S, Bönigk W, Stühmer W, Cook NJ, Kangawa K, Matsuo H, Hirose T, Miyata T, Numa S (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–766
Lamb TD, Matthews HR, Torre V (1986) Incorporation of calcium buffers into salamander retinal rods: a rejection of the calcium hypothesis of phototransduction. J Physiol 372:315–349
Matthews HR, Torre V, Lamb TD (1985) Effects on the photoresponse of calcium buffers and cyclic GMP incorporated into the cytoplasm of retinal rods. Nature 313:582–585
Shinozawa T, Sokabe M, Terada S, Matsusaka H, Yoshizawa T (1987) Detection of cyclic GMP binding protein and ion channel activity in frog rod outer segments. J Biochem 102:281–290
Horio Y, Murad F (1991) Solubilization of guanylyl cyclase from bovine rod outer segments and effects of lowering Ca2 + and nitro compounds. J Biol Chem 266:3411–3415
Horio Y, Murad F (1133) Purification of guanylyl cyclase from rod outer segments. Biochim Biophys Acta 81–88:1991
Stryer L (1991) Visual excitation and recovery. J Biol Chem 266:10711–10714
Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, Lowe DG (1992) Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 9:727–737
Margulis A, Goraczniak RM, Duda T, Sharma RK, Sitaramayya A (1993) Structural and biochemical identity of retinal rod outer segment membrane guanylate cyclase. Biochem Biophys Res Commun 194:855–861
Goraczniak RM, Duda T, Sitaramayya A, Sharma RK (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase. Biochem J 302:455–461
Koch KW (1991) Purification and identification of photoreceptor guanylate cyclase. J Biol Chem 266:8634–8637
Hayashi F, Yamazaki A (1991) Polymorphism in purified guanylate cyclase from vertebrate rod photoreceptors. Proc Natl Acad Sci USA 88:4746–4750
Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92:5535–5539
Goraczniak R, Duda T, Sharma RK (1997) Structural and functional characterization of a second subfamily member of the calcium-modulated bovine rod outer segment membrane guanylate cyclase, ROS-GC2. Biochem Biophys Res Commun 234:666–670
Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352
Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB (1995) Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206
Frins S, Bönigk W, Müller F, Kellner R, Koch KW (1996) Functional characterization of a guanylyl cyclase-activating protein from vertebrate rods. Cloning, heterologous expression, and localization. J Biol Chem 271:8022–8027
Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS, Baehr W (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404
Duda T, Goraczniak R, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Palczewski K, Sitaramayya A, Baehr W, Sharma RK (1996) Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35:8478–8482
Sharma RK, Duda T, Venkataraman V, Koch K-W (2004) Calcium-modulated mammalian membrane guanylate cyclase ROS-GC transduction machinery in sensory neurons: a universal concept. Res Trends, Curr Top Biochem Res 6:111–144
Koch KW, Duda T, Sharma RK (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem 230:97–106
Burns ME, Baylor DA (2001) Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 24:779–805
Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824
Pugh EN Jr, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Stavenga DG, DeGrip WJ, Pugh EN Jr (eds) Handbook of biological physics. Elsevier, North-Holland, pp 183–255
Ridge KD, Abdulaev NG, Sousa M, Palczewski K (2003) Phototransduction: crystal clear. Trends Biochem Sci 28:479–487
Pugh EN Jr, Nikonov S, Lamb TD (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 9:410–418
Hwang JY, Lange C, Helten A, Höppner-Heitmann D, Duda T, Sharma RK, Koch KW (2003) Regulatory modes of rod outer segment membrane guanylate cyclase differ in catalytic efficiency and Ca(2+)-sensitivity. Eur J Biochem 270:3814–3821
Olshevskaya EV, Ermilov AN, Dizhoor AM (1999) Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J Biol Chem 274:25583–25587
Hwang JY, Schlesinger R, Koch KW (2004) Irregular dimerization of guanylate cyclase-activating protein 1 mutants causes loss of target activation. Eur J Biochem 271:3785–3793
Hwang JY, Koch KW (2002) The myristoylation of the neuronal Ca2+-sensors guanylate cyclase-activating protein 1 and 2. Biochim Biophys Acta 1600:111–117
Hwang JY, Koch KW (2002) Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry 41:13021–13028
Lange C, Duda T, Beyermann M, Sharma RK, Koch KW (1999) Regions in vertebrate photoreceptor guanylyl cyclase ROS-GC1 involved in Ca(2+)-dependent regulation by guanylyl cyclase-activating protein GCAP-1. FEBS Lett 460:27–31
Krishnan A, Goraczniak RM, Duda T, Sharma RK (1998) Third calcium-modulated rod outer segment membrane guanylate cyclase transduction mechanism. Mol Cell Biochem 178:251–259
Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan R, Koch KW, Sharma RK (2005) The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1. Biochemistry 44:7336–7345
Schrem A, Lange C, Beyermann M, Koch KW (1999) Identification of a domain in guanylyl cyclase-activating protein 1 that interacts with a complex of guanylyl cyclase and tubulin in photoreceptors. J Biol Chem 274:6244–6249
Yu H, Olshevskaya E, Duda T, Seno K, Hayashi F, Sharma RK, Dizhoor AM, Yamazaki A (1999) Activation of retinal guanylyl cyclase-1 by Ca2+-binding proteins involves its dimerization. J Biol Chem 274:15547–15555
Howes KA, Pennesi ME, Sokal I, Church-Kopish J, Schmidt B, Margolis D, Frederick JM, Rieke F, Palczewski K, Wu SM, Detwiler PB, Baehr W (2002) GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice. EMBO J 21:1545–1554
Pennesi ME, Howes KA, Baehr W, Wu SM (2003) Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice. Proc Natl Acad Sci USA 100:6783–6788
Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J (2001) Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Ski USA 98:9948–9953
Duda T, Venkataraman V, Krishnan A, Sharma RK (1998) Rod outer segment membrane guanylate cyclase type 1 (ROS-GC1) gene: structure, organization and regulation by phorbol ester, a protein kinase C activator. Mol Cell Biochem 189:63–70
Yang RB, Fülle HJ, Garbers DL (1996) Chromosomal localization and genomic organization of genes encoding guanylyl cyclase receptors expressed in olfactory sensory neurons and retina. Genomics 31:367–372
Johnston JP, Farhangfar F, Aparicio JG, Nam SH, Applebury ML (1997) The bovine guanylate cyclase GC-E gene and 5′ flanking region. Gene 193:219–227
Duda T, Koch KW (2002) Retinal diseases linked with photoreceptor guanylate cyclase. Mol Cell Biochem 230:129–138
Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Châtelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frézal J, Dufier JL, Pittler S, Munnich A, Kaplan J (1996) Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 14:461–464
Duda T, Venkataraman V, Goraczniak R, Lange C, Koch KW, Sharma RK (1999) Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber’s congenital amaurosis. Biochemistry 38:509–515
Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184
Duda T, Krishnan A, Venkataraman V, Lange C, Koch KW, Sharma RK (1999) Mutations in the rod outer segment membrane guanylate cyclase in a cone-rod dystrophy cause defects in calcium signaling. Biochemistry 38:13912–13919
Duda T, Venkataraman V, Jankowska A, Lange C, Koch KW, Sharma RK (2000) Impairment of the rod outer segment membrane guanylate cyclase dimerization in a cone-rod dystrophy results in defective calcium signaling. Biochemistry 39:12522–12533
Tucker CL, Woodcock SC, Kelsell RE, Ramamurthy V, Hunt DM, Hurley JB (1999) Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc Natl Acad Sci USA 96:9039–9044
Newbold RJ, Deery EC, Walker CE, Wilkie SE, Srinivasan N, Hunt DM, Bhattacharya SS, Warren MJ (2001) The destabilization of human GCAP1 by a proline to leucine mutation might cause cone-rod dystrophy. Hum Mol Genet Jan 10:47–54
Dizhoor AM, Boikov SG, Olshevskaya EV (1998) Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J Biol Chem 273:17311–17314
Sokal I, Li N, Surgucheva I, Warren MJ, Payne AM, Bhattacharya SS, Baehr W, Palczewski K (1998) GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell 2:129–133
Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, Zhang H, Lin W, Zack DJ, Bhattacharya SS, Warren MJ, Hunt DM, Zhang K (2001) Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet 69:471–480
Cooper N, Liu L, Yoshida A, Pozdnyakov N, Margulis A, Sitaramayya A (1995) The bovine rod outer segment guanylate cyclase, ROS-GC, is present in both outer segment and synaptic layers of the retina. J Mol Neurosci 6:211–222
Liu X, Seno K, Nishizawa Y, Hayashi F, Yamazaki A, Matsumoto H, Wakabayashi T, Usukura J (1994) Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59(6):761–768
Redburn DA, Thomas TN (1979) Isolation of synaptosomal fractions from rabbit retina. J Neurosci Methods 1:235–242
Venkataraman V, Duda T, Vardi N, Koch K-W, Sharma RK (2003) Calcium-modulated guanylate cyclase transduction machinery in the photoreceptor–bipolar synaptic region. Biochemistry 42:5640–5648
Krizaj D, Copenhagen DR (2002) Calcium regulation in photoreceptors. Front Biosci 7:d2023–d2044
Pozdnyakov N, Goraczniak R, Margulis A, Duda T, Sharma RK, Yoshida A, Sitaramayya A (1997) Structural and functional characterization of retinal calcium-dependent guanylate cyclase activator protein (CD-GCAP): identity with S100beta protein. Biochemistry 36:14159–14166
Pozdnyakov N, Yoshida A, Cooper NG, Margulis A, Duda T, Sharma RK, Sitaramayya A (1995) A novel calcium-dependent activator of retinal rod outer segment membrane guanylate cyclase. Biochemistry 34:14279–14283
Duda T, Goraczniak RM, Sharma RK (1996) Molecular characterization of S100A1–S100B protein in retina and its activation mechanism of bovine photoreceptor guanylate cyclase. Biochemistry 35:6263–6266
Duda T, Goraczniak RM, Pozdnyakov N, Sitaramayya A, Sharma RK (1998) Differential activation of rod outer segment membrane guanylate cyclases, ROS-GC1 and ROS-GC2, by CD-GCAP and identification of the signaling domain. Biochem Biophys Res Commun 242:118–122
Margulis A, Pozdnyakov N, Sitaramayya A (1996) Activation of bovine photoreceptor guanylate cyclase by S100 proteins. Biochem Biophys Res Commun 218:243–247
Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK (2002) Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J 21:2547–2556
Terasawa M, Nakano A, Kobayashi R, Hidaka H (1992) Neurocalcin: a novel calcium-binding protein from bovine brain. J Biol Chem 267:19596–19599
Okazaki K, Watanabe M, Ando Y, Hagiwara M, Terasawa M, Hidaka H (1992) Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochem Biophys Res Commun 185:147–153
Kumar VD, Vijay-Kumar S, Krishnan A, Duda T, Sharma RK (1999) A second calcium regulator of rod outer segment membrane guanylate cyclase, ROS-GC1: neurocalcin. Biochemistry 38:12614–12620
Kumar VD, Hidaka H, Okazaki K, Vijay-Kumar S (1996) Crystallization and preliminary X-ray crystallographic studies of recombinant bovine neurocalcin delta. Proteins 25:261–264
Vijay-Kumar S, Kumar VD (1999) Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol 6:80–88
Matsumura H, Shiba T, Inoue T, Harada S, Kai Y (1998) A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Structure 6:233–241
Duda T, Venkataraman V, Sharma RK (2007) Constitution and operational principles of the retinal and odorant-linked neurocalcin δ-dependent Ca2+ modulated ROS-GC transduction machinery. In: Philipov P, Koch KW (eds) Neuronal calcium sensor proteins. Nova Science Publishers, Inc, New York
Krishnan A, Venkataraman V, Fik-Rymarkiewicz E, Duda T, Sharma RK (2004) Structural, biochemical, and functional characterization of the calcium sensor neurocalcin delta in the inner retinal neurons and its linkage with the rod outer segment membrane guanylate cyclase transduction system. Biochemistry 43:2708–2723
Burgess WH, Jemiolo DK, Kretsinger RH (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta 623:257–270
Ladant D (1995) Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J Biol Chem 270:3179–3185
Duda T, Venkataraman V, Krishnan A, Nagele RG, Sharma RK (2001) Negatively calcium-modulated membrane guanylate cyclase signaling system in the rat olfactory bulb. Biochemistry 40:4654–4662
Shepherd GM, Greer CA (1998) Olfactory bulb. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New York, pp 159–203
Pinching AJ, Powell TP (1971) The neuron types of the glomerular layer of the olfactory bulb. J Cell Sci 9:305–345
Duda T, Jankowska A, Venkataraman V, Nagele RG, Sharma RK (2001) A novel calcium-regulated membrane guanylate cyclase transduction system in the olfactory neuroepithelium. Biochemistry 40:12067–12077
Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan A, Sharma RK (2004) Calcium-modulated ciliary membrane guanylate cyclase transduction machinery: constitution and operational principles. Mol Cell Biochem 267:107–122 (erratum in: Mol Cell Biochem 273:225–226, 2005)
Fülle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1999) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92:3571–3575
Juilfs DM, Fülle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signa transduction pathway. Proc Natl Acad Sci USA 94:3388–3395
Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci USA 97:10595–10600
Moon C, Jaberi P, Otto-Bruc A, Baehr W, Palczewski K, Ronnett GV (1998) Calcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons. J Neurosci 18:3195–3205
Duda T, Sharma RK (2004) S100B-modulated Ca2+-dependent ROS-GC1 transduction machinery in the gustatory epithelium: a new mechanism in gustatory transduction. FEBS Lett 577:393–398
Herness MS, Gilbertson TA (1999) Cellular mechanisms of taste transduction. Annu Rev Physiol 61:873–900
Yamamoto T, Nagai T, Shimura T, Yasoshima Y (1998) Roles of chemical mediators in the taste system. Jpn J Pharmacol 76:325–348
Misaka T, Kusakabe Y, Emori Y, Arai S, Abe K (1998) Molecular cloning and taste bud-specific expression of a novel cyclic nucleotide-gated channel. Ann N Y Acad Sci 855:150–159
Asanuma N, Nomura H (1995) Cytochemical localization of guanylyl cyclase activity in rabbit taste bud cells. Chem Senses 20:231–237
Doolin RE, Gilbertson TA (1996) Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue. J Gen Physiol 107:545–554
Jaiswal RK, Sharma RK (1985) Purification and biochemical characterization of alpha 2-adrenergic receptor from the rat adrenocortical carcinoma. Biochem Biophys Res Commun 130:58–64
Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoreceptors. Pharmacol Rev 46:121–136
Lanier SM, Downing S, Duzic E, Homcy CJ (1991) Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype. J Biol Chem 266:10470–10478
O’Rourke MF, Iversen LJ, Lomasney JW, Bylund DB (1994) Species orthologs of the alpha-2A adrenergic receptor: the pharmacological properties of the bovine and rat receptors differ from the human and porcine receptors. J Pharmacol Exp Ther 271:735–740
Venkataraman V, Duda T, Sharma RK (1999) Alpha2D/A-adrenergic receptor gene induction in the retina by phorbol ester: involvement of an AP-2 element. Genes Cells 4:161–173
Venkataraman V, Duda T, Sharma RK (1998) The alpha(2D/A)-adrenergic receptor-linked membrane guanylate cyclase: a new signal transduction system in the pineal gland. FEBS Lett 427:69–73
Venkataraman V, Nagele R, Duda T, Sharma RK (2000) Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence. Biochemistry 39:6042–6052
Yang RB, Foster DC, Garbers DL, Fülle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606
Takahashi JS, Recourse PJ, Bauman L, Menace M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308:186–188
Korf HW, Schomerus C, Stehle JH (1998) The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol 146:1–100
Racké K, Krupa H, Schröder H, Vollrath L (1989) In vitro synthesis of dopamine and noradrenaline in the isolated rat pineal gland: day-night variations and effects of electrical stimulation. J Neurochem 53:354–361
Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445
Garbers DL (1976) Sea urchin sperm guanylate cyclase. Purification and loss of cooperativity. J Biol Chem 251:4071–4077
Garbers DL (1978) Sea urchin sperm guanylate cyclase antibody. Cross-reactivity various rat tissue guanylate cyclases. J Biol Chem 253:1898–1901
Garbers DL, Murad F (1979) Guanylate cyclase assay methods. Adv Cyclic Nucleotide Res 10:57–67
White AA, Zenser TV (1974) Preparation and characterization of guanylate cyclase from bovine lung. Methods Enzymol 38:192–195
Keirns JJ, Miki N, Bitensky MW (1974) Preparation of vertebrate photoreceptor membranes for study of adenylate cyclase, guanylate cyclase, and cyclic nucleotide phosphodiesterase. Methods Enzymol 38:153–155
Schultz G (1974) General principles of assays for adenylate cyclase and guanylate cyclase activity. Methods Enzymol 38:115–125
Seifert W, Rudland PS (1974) Proceedings: cyclic GMP, guanylate cyclase and growth control. Hoppe Seylers Z Physiol Chem 355:1255
Garbers DL, Suddath JL, Hardman JG (1975) Enzymatic formation of inosine 3′,5′-monophosphate and of 2′-deoxyguanosine 3′,5′-monophosphate. Inosinate and deoxyguanylate cyclase activity. Biochim Biophys Acta 377:174–185
Chrisman TD, Garbers DL, Parks MA, Hardman JG (1975) Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem 250:374–381
Virmaux N, Nullans G, Goridis C (1976) Guanylate cyclase in vertebrate retina: evidence for specific association with rod outer segments. J Neurochem 26:233–235
Yamazaki A, Yu H, Yamazaki M, Honkawa H, Matsuura I, Usukura J, Yamazaki RK (2003) A critical role for ATP in the stimulation of retinal guanylyl cyclase by guanylyl cyclase-activating proteins. J Biol Chem 278:33150–33160
Yamazaki M, Usukura J, Yamazaki RK, Yamazaki A (2005) ATP binding is required for physiological activation of retinal guanylate cyclase. Biochem Biophys Res Commun 338:1291–1298
Antos LK, Abbey-Hosch SE, Flora DR, Potter LR (2005) ATP-independent activation of natriuretic peptide receptors. J Biol Chem 280:26928–26932
Burczynska B, Duda T, Sharma RK (2007) ATP signaling site in the ARM domain of atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 301:93–107
Joubert S, Jossart C, McNicoll N, De Léan A (2005) Atrial natriuretic peptide-dependent photolabeling of a regulatory ATP-binding site on the natriuretic peptide receptor-A. FEBS J 272:5572–5583
Miyagi M, Misono KS (2000) Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochim Biophys Acta 1478:30–38
Labrecque J, Mc Nicoll N, Marquis M, De Léan A (1999) A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction. J Biol Chem 274:9752–9759
Duda T, Bharill S, Wojtas I, Yadav P, Gryczynski I, Gryczynski Z, Sharma RK (2009) Atrial natriuretic factor receptor guanylate cyclase signaling: new ATP-regulated transduction motif. Mol Cell Biochem 324:39–53
Potter LR, Hunter T (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem 276:6057–6060
Koller KJ, Lipari MT, Goeddel DV (1993) Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem 268:5997–6003
Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193
Koch KW (2006) GCAPs, the classical neuronal calcium sensors in the retina—a Ca2+-relay model of guanylate cyclase activation. Calcium Binding Proteins 1:3–6
Ramamurthy V, Tucker C, Wilkie SE, Daggett V, Hunt DM, Hurley JB (2001) Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J Biol Chem 276:26218–26229
Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742
Venkataraman V, Duda T, Ravichandran S, Sharma RK (2008) Neurocalcin delta Modulation of ROS-GC1, a new model of Ca(2+) signaling. Biochemistry 47:6590–6601
Sharma RK, Duda T (2006) Calcium sensor neurocalcin δ-modulated ROS-GC transduction machinery in the retinal and olfactory neurons. Calcium Binding Proteins 1:7–11
Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512
Duda T, Sharma RK (2009) Ca2+-modulated ONE-GC odorant signal transduction. FEBS Lett 583:1327–1330
Krishnan A, Duda T, Pertzev A, Kobayashi M, Takamatsu K, Sharma RK (2009) Hippocalcin, new Ca(2+) sensor of a ROS-GC subfamily member, ONE-GC, membrane guanylate cyclase transduction system. Mol Cell Biochem 325:1–14
Fik-Rymarkiewicz E, Duda T, Sharma RK (2006) Novel frequenin-modulated Ca2+-signaling membrane guanylate cyclase (ROS-GC) transduction pathway in bovine hippocampus. Mol Cell Biochem 291:187–204
Duda T, Krishnan R, Sharma RK (2006) GCAP1, antithetical calcium sensor of ROS-GC transduction machinery. Calcium Binding Proteins 1:102–107
Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA 106:2041–2046
Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–4422
Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957
Fleischer J, Mamasuew K, Breer H (2009) Expression of cGMP signaling elements in the Grueneberg ganglion. Histochem Cell Biol 131:75–88
Acknowledgments
This investigator expresses his gratitude to all the fellows for their contributions in his laboratory; to Dr. Teresa Duda for her dedication, collegiality and contributions in these studies; to Drs. Ari Sitaramayya and Karl-Wilhelm Koch for fruitful collaborations. He is indebted to his wife Joan Sharma for her patience and continuous moral support; to his daughter Sanya S. Khajuria for spending painful hours in editing this manuscript. He feels fortunate to have the friendship and support of Dr. Naranjan S. Dhalla, Distinguished Professor, University of Manitoba, Winnipeg, Canada. He gratefully acknowledges the continuous support for the last 35 years by the numerous USPHS awards from the National Institutes of Health, the beginning awards from the National Science Foundation and the Damon Runyon Walter Winchell Cancer Fund. At present, this investigator is the Distinguished Professor of Biochemistry and Molecular Biology in the Salus University; he is thankful to Dr. Anthony Di Stefano, Academic Vice President, for awarding him this honor.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sharma, R.K. Membrane guanylate cyclase is a beautiful signal transduction machine: overview. Mol Cell Biochem 334, 3–36 (2010). https://doi.org/10.1007/s11010-009-0336-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11010-009-0336-6