Skip to main content
Log in

Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC), like the other members of the membrane guanylate cyclase family, is a single transmembrane-spanning protein. The transmembrane domain separates the protein into two regions, extracellular and intracellular. The extracellular region contains the ANF-binding domain and the intracellular region the catalytic domain located at the C-terminus of the protein. Preceding the catalytic domain, the intracellular region is comprised of the following functional domains: juxtaposed 40 amino acids to the transmembrane domain is the ATP-regulated module (ARM) domain [also termed the kinase homology domain (KHD)], and the putative dimerization domain. The ANF-RGC signaling is initiated by hormone, ANF, binding to its extracellular binding site. The binding signal is transduced through the transmembrane domain to the intracellular portion where ATP binding to the ARM domain partially activates the cyclase and prepares it for subsequent steps involving phosphorylation and attaining the fully activated state. This chapter reviews the signaling modules of ANF-RGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paul AK, Marala RB, Jaiswal RK, Sharma RK (1987) Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235:1224–1226

    CAS  PubMed  Google Scholar 

  2. Paul AK (1986) Particulate guanylate cyclase from adrenocortical carcinoma 494. Purification, biochemical and immunological characterization. Doctoral thesis, University of Tennessee

  3. Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823

    CAS  PubMed  Google Scholar 

  4. Meloche S, McNicoll N, Liu B, Ong H, De Lean A (1988) Atrial natriuretic factor R1 receptor from bovine adrenal zona glomerulosa: purification, characterization, and modulation by amiloride. Biochemistry 27:8151–8158

    CAS  PubMed  Google Scholar 

  5. Takayanagi R, Inagami T, Snajdar RM, Imada T, Tamura M, Misono KS (1987) Two distinct forms of receptors for atrial natriuretic factor in bovine adrenocortical cells. Purification, ligand binding, and peptide mapping. J Biol Chem 262:12104–12113

    CAS  PubMed  Google Scholar 

  6. Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83

    CAS  PubMed  Google Scholar 

  7. Duda T, Goraczniak RM, Sharma RK (1991) Site-directed mutational analysis of a membrane guanylate cyclase cDNA reveals the atrial natriuretic factor signaling site. Proc Natl Acad Sci USA 88:7882–7886

    CAS  PubMed  Google Scholar 

  8. Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV (1989) Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8:1377–13784

    CAS  PubMed  Google Scholar 

  9. Marala R, Duda T, Goraczniak RM, Sharma RK (1992) Genetically tailored atrial natriuretic factor-dependent guanylate cyclase: immunological and functional identity with 180 kDa membrane guanylate cyclase and ATP signaling site. FEBS Lett 296:254–258

    CAS  PubMed  Google Scholar 

  10. Pandey KN, Singh S (1990) Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem 265:12342–12348

    CAS  PubMed  Google Scholar 

  11. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341:68–72

    CAS  PubMed  Google Scholar 

  12. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL (1989) The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162

    CAS  PubMed  Google Scholar 

  13. Duda T, Goraczniak RM, Sitaramayya A, Sharma RK (1993) Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylate cyclase. Biochemistry 32:1391–1395

    CAS  PubMed  Google Scholar 

  14. de Sauvage FJ, Camerato TR, Goeddel DV (1991) Primary structure and functional expression of the human receptor for Escherichia coli heat-stable enterotoxin. J Biol Chem 266:17912–17918

    PubMed  Google Scholar 

  15. Hamra FK, Forte LR, Eber SL, Pidhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA, Fok KF, Smith CE, Duffin KL, Siegel NR, Currie MG (1993) Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 90:10464–10468

    CAS  PubMed  Google Scholar 

  16. Khare S, Wilson D, Wali RK, Tien XY, Bissonnette M, Niedziela SM, Bolt MJ, Sitrin MD, Brasitus TA (1994) Guanylin activates rat colonic particulate guanylate cyclase. Biochem Biophys Res Commun 203:1432–1437

    CAS  PubMed  Google Scholar 

  17. Schulz S, Green CK, Yuen PS, Garbers DL (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63:941–948

    CAS  PubMed  Google Scholar 

  18. Singh S, Singh G, Heim JM, Gerzer R (1991) Isolation and expression of a guanylate cyclase-coupled heat stable enterotoxin receptor cDNA from a human colonic cell line. Biochem Biophys Res Commun 179:1455–1463

    CAS  PubMed  Google Scholar 

  19. Goraczniak RM, Duda T, Sitaramayya A, Sharma RK (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase. Biochem J 302:455–461

    CAS  PubMed  Google Scholar 

  20. Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, Lowe DG (1992) Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 9:727–737

    CAS  PubMed  Google Scholar 

  21. Lowe DG (1995) Gene Bank accession number M92432

  22. Koch KW (1991) Purification and identification of photoreceptor guanylate cyclase. J Biol Chem 266:8634–8637

    CAS  PubMed  Google Scholar 

  23. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92:5535–5539

    CAS  PubMed  Google Scholar 

  24. Goraczniak RM, Duda T, Sharma RK (1998) Calcium modulated signaling site in type 2 rod outer segment membrane guanylate cyclase (ROS-GC2). Biochem Biophys Res Commun 245:447–453

    CAS  PubMed  Google Scholar 

  25. Yang RB, Foster DC, Garbers DL, Fulle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606

    CAS  PubMed  Google Scholar 

  26. Duda T, Jankowska A, Venkataraman V, Nagele RG, Sharma RK (2001) A novel calcium-regulated membrane guanylate cyclase transduction system in the olfactory neuroepithelium. Biochemistry 40:12067–12077

    CAS  PubMed  Google Scholar 

  27. Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92:3571–3575

    CAS  PubMed  Google Scholar 

  28. Schulz S, Wedel BJ, Matthews A, Garbers DL (1998) The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem 273:1032–1037

    CAS  PubMed  Google Scholar 

  29. Wedel BJ, Garbers DL (1997) New insights on the functions of the guanylyl cyclase receptors. FEBS Lett 410:29–33

    CAS  PubMed  Google Scholar 

  30. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB (1995) Cloning, sequencing, and expression of a 24-kDa Ca(2 +)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206

    CAS  PubMed  Google Scholar 

  31. Pozdnyakov N, Yoshida A, Cooper NG, Margulis A, Duda T, Sharma RK, Sitaramayya A (1995) A novel calcium-dependent activator of retinal rod outer segment membrane guanylate cyclase. Biochemistry 34:14279–14283

    CAS  PubMed  Google Scholar 

  32. Margulis A, Pozdnyakov N, Sitaramayya A (1996) Activation of bovine photoreceptor guanylate cyclase by S100 proteins. Biochem Biophys Res Commun 218:243–247

    CAS  PubMed  Google Scholar 

  33. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS, Walsh KA, Gray-Keller MP, Detwiler P, Baehr W (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404

    CAS  PubMed  Google Scholar 

  34. Frins S, Bönigk W, Müller F, Kellner R, Koch KW (1996) Functional characterization of a guanylyl cyclase-activating protein from vertebrate rods: cloning, heterologous expression, and localization. J Biol Chem 271:8022–8027

    CAS  PubMed  Google Scholar 

  35. Duda T, Goraczniak RM, Sharma RK (1996) Molecular characterization of S100A1-S100B protein in retina and its activation mechanism of bovine photoreceptor guanylate cyclase. Biochemistry 35:6263–6266

    CAS  PubMed  Google Scholar 

  36. Duda T, Goraczniak R, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Palczewski K, Sitaramayya A, Baehr W, Sharma RK (1996) Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35:8478–8482

    CAS  PubMed  Google Scholar 

  37. Kumar VD, Vijay-Kumar S, Krishnan A, Duda T, Sharma RK (1999) A second calcium regulator of rod outer segment membrane guanylate cyclase, ROS-GC1: neurocalcin. Biochemistry 38:12614–12620

    CAS  PubMed  Google Scholar 

  38. Duda T, Krishnan R, Sharma RK (2006) GCAP1: antithetical calcium sensor of ROS-GC transduction machinery. Calcium Binding Proteins 1:102–107

    Google Scholar 

  39. Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 230:3–30

    CAS  PubMed  Google Scholar 

  40. Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512

    CAS  PubMed  Google Scholar 

  41. Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445

    CAS  PubMed  Google Scholar 

  42. Duda T, Sharma RK (2009) Ca2+-modulated ONE-GC odorant signal transduction. FEBS Lett 583:1327–1330

    CAS  PubMed  Google Scholar 

  43. Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA 106:2041–2046

    CAS  PubMed  Google Scholar 

  44. Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–4422

    CAS  PubMed  Google Scholar 

  45. Labrecque J, Mc Nicoll N, Marquis M, De Lean A (1999) A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction. J Biol Chem 274:9752–9759

    CAS  PubMed  Google Scholar 

  46. Yu H, Olshevskaya E, Duda T, Seno K, Hayashi F, Sharma RK, Dizhoor AM, Yamazaki A (1999) Activation of retinal guanylyl cyclase-1 by Ca2+-binding proteins involves its dimerization. J Biol Chem 274:15547–15555

    CAS  PubMed  Google Scholar 

  47. Wilson EM, Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 3:4696–4701

    Google Scholar 

  48. Thorpe DS, Niu S, Morkin E (1991) Overexpression of dimeric guanylyl cyclase cores of an atrial natriuretic peptide receptor. Biochem Biophys Res Commun 180:538–544

    CAS  PubMed  Google Scholar 

  49. Liu Y, Ruoho AE, Rao VD, Hurley JH (1997) Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Natl Acad Sci USA 9:13414–13419

    Google Scholar 

  50. Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742

    CAS  PubMed  Google Scholar 

  51. Qiu Y, Ogawa H, Miyagi M, Misono KS (2004) Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling. J Biol Chem 279:6115–6123

    CAS  PubMed  Google Scholar 

  52. Sharma RK, Duda T, Venkataraman V, Koch K-W (2004) Calcium-modulated mammalian membrane guanylate cyclase ROS-GC transduction machinery in sensory neurons: a universal concept. Curr Topics Biochem Res 6:111–144

    CAS  Google Scholar 

  53. Hartmann M, Skryabin BV, Müller T, Gazinski A, Schröter J, Gassner B, Nikolaev VO, Bünemann M, Kuhn M (2008) Alternative splicing of the guanylyl cyclase-A receptor modulates atrial natriuretic peptide signaling. J Biol Chem 283:22313–28320

    Google Scholar 

  54. McNicoll N, Gagnon J, Rondeau JJ, Ong H, De Léan A (1996) Localization by photoaffinity labeling of natriuretic peptide receptor-A binding domain. Biochemistry 35:12950–12956

    CAS  PubMed  Google Scholar 

  55. McNicoll N, Escher E, Wilkes BC, Schiller PW, Ong H, De Léan A (1992) Highly efficient photoaffinity labeling of the hormone binding domain of atrial natriuretic factor receptor. Biochemistry 31:4487–4493

    CAS  PubMed  Google Scholar 

  56. Misono KS (2002) Natriuretic peptide receptor: structure and signaling. Mol Cell Biochem 230:49–60

    CAS  PubMed  Google Scholar 

  57. He X, Nishio K, Misono KS (1995) High-yield affinity alkylation of the atrial natriuretic factor receptor binding site. Bioconjug Chem 6:541–548

    CAS  PubMed  Google Scholar 

  58. Misono KS, Ogawa H, Qiu Y, Ogata CM (2005) Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction. Peptides 26:957–968

    CAS  PubMed  Google Scholar 

  59. Ogawa H, Zhang X, Qiu Y, Ogata CM, Misono KS (2003) Crystallization and preliminary X-ray analysis of the atrial natriuretic peptide (ANP) receptor extracellular domain complex with ANP: use of ammonium sulfate as the cryosalt. Acta Crystallogr D 59:1831–1833

    PubMed  Google Scholar 

  60. Ogawa H, Qiu Y, Ogata CM, Misono KS (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem 279:28625–28631

    CAS  PubMed  Google Scholar 

  61. Heim JM, Singh S, Gerzer R (1996) Effect of glycosylation on cloned ANF-sensitive guanylyl cyclase. Life Sci 59:PL61–PL68

    CAS  PubMed  Google Scholar 

  62. Koller KJ, Lipari MT, Goeddel DV (1993) Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem 268:5997–6003

    CAS  PubMed  Google Scholar 

  63. Lowe DG, Fendly BM (1992) Human natriuretic peptide receptor-A guanylyl cyclase. Hormone cross-linking and antibody reactivity distinguish receptor glycoforms. J Biol Chem 267:21691–21697

    CAS  PubMed  Google Scholar 

  64. Miyagi M, Zhang X, Misono KS (2000) Glycosylation sites in the atrial natriuretic peptide receptor: oligosaccharide structures are not required for hormone binding. Eur J Biochem 267:5758–5768

    CAS  PubMed  Google Scholar 

  65. Miyagi M, Misono KS (2000) Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochim Biophys Acta 1478:30–38

    CAS  PubMed  Google Scholar 

  66. Huo X, Abe T, Misono KS (1999) Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide receptor: juxtamembrane hinge structure essential for transmembrane signal transduction. Biochemistry 38:16941–16951

    CAS  PubMed  Google Scholar 

  67. Labrecque J, Deschênes J, McNicoll N, De Léan A (2001) Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation. J Biol Chem 276:8064–8072

    CAS  PubMed  Google Scholar 

  68. Duda T, Sharma RK (2005) Two membrane juxtaposed signaling modules in ANF-RGC are interlocked. Biochem Biophys Res Commun 332:149–156

    CAS  PubMed  Google Scholar 

  69. Ogawa H, Qiu Y, Huang L, Tam-Chang SW, Young HS, Misono KS (2009) Structure of the atrial natriuretic peptide receptor extracellular domain in the unbound and hormone-bound states by single-particle electron microscopy. FEBS J 276:1347–1355

    CAS  PubMed  Google Scholar 

  70. Chang CH, Kohse KP, Chang B, Hirata M, Jiang B, Douglas JE, Murad F (1990) Characterization of ATP-stimulated guanylate cyclase activation in rat lung membranes. Biochim Biophys Acta 1052:159–165

    CAS  PubMed  Google Scholar 

  71. Kurose H, Inagami T, Ui M (1987) Participation of adenosine 5′-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett 219:375–379

    CAS  PubMed  Google Scholar 

  72. Duda T, Venkataraman V, Ravichandran S, Sharma RK (2005) ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides 26:969–984

    CAS  PubMed  Google Scholar 

  73. Chinkers M, Singh S, Garbers DL (1991) Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 266:4088–4093

    CAS  PubMed  Google Scholar 

  74. Marala RB, Sitaramayya A, Sharma RK (1991) Dual regulation of atrial natriuretic factor-dependent guanylate cyclase activity by ATP. FEBS Lett 281:73–76

    CAS  PubMed  Google Scholar 

  75. Wong SK, Ma CP, Foster DC, Chen AY, Garbers DL (1995) The guanylyl cyclase-A receptor transduces an atrial natriuretic peptide/ATP activation signal in the absence of other proteins. J Biol Chem 270:30818–30822

    CAS  PubMed  Google Scholar 

  76. Goraczniak RM, Duda T, Sharma RK (1992) A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J 282:533–537

    CAS  PubMed  Google Scholar 

  77. Duda T, Goraczniak RM, Sharma RK (1993) The glycine residue of ATP regulatory module in receptor guanylate cyclases that is essential in natriuretic factor signaling. FEBS Lett 335:309–314

    CAS  PubMed  Google Scholar 

  78. Larose L, McNicoll N, Ong H, De Léan A (1991) Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions. Biochemistry 30:8990–8995

    CAS  PubMed  Google Scholar 

  79. Cole FE, Rondon I, Iwata T, Hardee E, Frohlich ED (1989) Effect of ATP and amiloride on ANF binding and stimulation of cyclic GMP accumulation in rat glomerular membranes. Life Sci 45:477–484

    CAS  PubMed  Google Scholar 

  80. Foster DC, Garbers DL (1998) Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. J Biol Chem 273:16311–16318

    CAS  PubMed  Google Scholar 

  81. Joubert S, Jossart C, McNicoll N, De Léan A (2005) Atrial natriuretic peptide-dependent photolabeling of a regulatory ATP-binding site on the natriuretic peptide receptor-A. FEBS J 272:5572–5583

    CAS  PubMed  Google Scholar 

  82. Burczynska B, Duda T, Sharma RK (2007) ATP signaling site in the ARM domain of atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 301:193–207

    Google Scholar 

  83. Chinkers M, Garbers DL (1989) The protein kinase domain of the ANP receptor is required for signaling. Science 245:1392–1394

    CAS  PubMed  Google Scholar 

  84. Wierenga RK, Hol WG (1983) Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302:842–844

    CAS  PubMed  Google Scholar 

  85. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    CAS  PubMed  Google Scholar 

  86. Duda T, Sharma RK (1995) ATP bimodal switch that regulates the ligand binding and signal transduction activities of the atrial natriuretic factor receptor guanylate cyclase. Biochem Biophys Res Commun 209:286–292

    CAS  PubMed  Google Scholar 

  87. Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK (2001) Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 217:165–172

    CAS  PubMed  Google Scholar 

  88. Sharma RK, Yadav P, Duda T (2001) Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 79:682–691

    CAS  PubMed  Google Scholar 

  89. Duda T, Bharill S, Wojtas I, Yadav P, Gryczynski I, Gryczynski Z, Sharma RK (2009) Atrial natriuretic factor receptor guanylate cyclase signaling: new ATP-regulated transduction motif. Mol Cell Biochem 324:39–53

    CAS  PubMed  Google Scholar 

  90. Jewett JR, Koller KJ, Goeddel DV, Lowe DG (1993) Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J 12:769–777

    CAS  PubMed  Google Scholar 

  91. Duda T, Sharma RK (1990) Regulation of guanylate cyclase activity by atrial natriuretic factor and protein kinase C. Mol Cell Biochem 93:179–184

    CAS  PubMed  Google Scholar 

  92. Larose L, Rondeau JJ, Ong H, De Lean A (1992) Phosphorylation of atrial natriuretic factor R1 receptor by serine/threonine protein kinases: evidences for receptor regulation. Mol Cell Biochem 115:203–211

    CAS  PubMed  Google Scholar 

  93. Sharma RK, Marala RB, Duda T (1989) Purification and characterization of the 180-kDa membrane guanylate cyclase containing atrial natriuretic factor receptor from rat adrenal gland and its regulation by protein kinase C. Steroids 53:437–460

    CAS  PubMed  Google Scholar 

  94. Potter LR, Hunter T (1999) A constitutively “phosphorylated” guanylyl cyclase-linked atrial natriuretic peptide receptor mutant is resistant to desensitization. Mol Biol Cell 10:1811–1820

    CAS  PubMed  Google Scholar 

  95. Potter LR, Hunter T (1998) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 273:15533–15539

    CAS  PubMed  Google Scholar 

  96. Potter LR, Hunter T (1999) Identification and characterization of the phosphorylation sites of the guanylyl cyclase-linked natriuretic peptide receptors A and B. Methods 19:506–520

    CAS  PubMed  Google Scholar 

  97. Antos LK, Abbey-Hosch SE, Flora DR, Potter LR (2005) ATP-independent activation of natriuretic peptide receptors. J Biol Chem 280:26928–26932

    CAS  PubMed  Google Scholar 

  98. Antos LK, Potter LR (2007) Adenine nucleotides decrease the apparent Km of endogenous natriuretic peptide receptors for GTP. Am J Physiol Endocrinol Metab 293:E1756–E1763

    CAS  PubMed  Google Scholar 

  99. Sharma RK, Jaiswal RK, Duda T (1988) Second messenger role of cyclic GMP in atrial natriuretic factor receptor mediated signal transduction: 180 kDa membrane guanylate cyclase, its coupling with atrial natriuretic factor receptor and its regulation by protein kinase C. In: Needleman P (ed) Biological and molecular aspects of atrial factors. UCLA symposia on molecular and cellular biology, New series, vol 81. Alan R. Liss, Inc., pp 77–96

  100. Sharma RK, Marala RB, Paul AK (1988) Mediatory role of cyclic GMP in receptor-mediated signal transduction: membrane guanylate cyclase and its coupling with atrial natriuretic factor receptor. In: Brenner BM, Laragh JH (eds) Advances in peptide research, vol II. American Society of Hypertension Symposium Series. Raven Press, New York, pp 61–77

    Google Scholar 

  101. Thorpe DS, Morkin E (1990) The carboxyl region contains the catalytic domain of the membrane form of guanylate cyclase. J Biol Chem 265:14717–14720

    CAS  PubMed  Google Scholar 

  102. Thorpe DS, Niu S, Morkin E (1996) The guanylyl cyclase core of an atrial natriuretic peptide receptor: enzymatic properties and basis for cooperativity. Biochem Biophys Res Commun 218:670–673

    CAS  PubMed  Google Scholar 

  103. Tremblay J, Huot C, Koch C, Potier M (1991) Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation. Biol Chem 266:8171–8175

    CAS  Google Scholar 

  104. Miao ZH, Song DL, Douglas JG, Chang CH (1995) Mutational inactivation of the catalytic domain of guanylate cyclase-A receptor. Hypertension 25:694–698

    CAS  PubMed  Google Scholar 

  105. Thompson DK, Garbers DL (1995) Dominant negative mutations of the guanylyl cyclase-A receptor. Extracellular domain deletion and catalytic domain point mutations. J Biol Chem 270:425–430

    CAS  PubMed  Google Scholar 

  106. Wedel BJ, Foster DC, Miller DE, Garbers DL (1997) A mutation of the atrial natriuretic peptide (guanylyl cyclase-A) receptor results in a constitutively hyperactive enzyme. Proc Natl Acad Sci USA 94:459–462

    CAS  PubMed  Google Scholar 

  107. Tucker CL, Hurley JH, Miller TR, Hurley JB (1998) Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci USA 95:5993–5997

    CAS  PubMed  Google Scholar 

  108. Venkataraman V, Duda T, Ravichandran S, Sharma RK (2008) Neurocalcin delta modulation of ROS-GC1, a new model of Ca(2+) signaling. Biochemistry 47:6590–6601

    CAS  Google Scholar 

  109. Garbers DL (1992) Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 71:1–4

    CAS  PubMed  Google Scholar 

  110. Juilfs DM, Fülle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 94:3388–3395

    CAS  PubMed  Google Scholar 

  111. Yamazaki A, Yu H, Yamazaki M, Honkawa H, Matsuura I, Usukura J, Yamazaki RK (2003) A critical role for ATP in the stimulation of retinal guanylyl cyclase by guanylyl cyclase-activating proteins. J Biol Chem 278:33150–33360

    CAS  PubMed  Google Scholar 

  112. Yamazaki M, Usukura J, Yamazaki RK, Yamazaki A (2005) ATP binding is required for physiological activation of retinal guanylate cyclase. Biochem Biophys Res Commun 338:1291–1298

    CAS  PubMed  Google Scholar 

  113. Yamazaki A, Yamazaki M, Yamazaki RK, Usukura J (2006) Illuminated rhodopsin is required for strong activation of retinal guanylate cyclase by guanylate cyclase-activating proteins. Biochemistry 45:1899–1909

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH award LH 084584. I wish to express my sincere gratefulness to Dr. Rameshwar K. Sharma, Distinguished Professor, Salus University, for introducing me to the membrane guanylate cyclase transduction research, for years of guidance, support, and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Duda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duda, T. Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism. Mol Cell Biochem 334, 37–51 (2010). https://doi.org/10.1007/s11010-009-0335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0335-7

Keywords

Navigation