Skip to main content
Log in

ROS-GC subfamily membrane guanylate cyclase-linked transduction systems: taste, pineal gland and hippocampus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the continuous efforts to test the validity of the theme that the Ca2+-modulated ROS-GC subfamily system is a universal transduction component of the sensory and sensory-linked network of neurons, this article focuses on the presence and variant biochemical forms of this transduction system in the gustatory epithelium, the site of gustatory transduction; in the pineal, a light-sensitive gland; and in the hippocampus neurons, linked with the perception of all SENSES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avenet P, Lindemann B (1987) Action potentials in epithelial taste receptor cells induced by mucosal calcium. J Membr Biol 95:265–269

    Article  CAS  PubMed  Google Scholar 

  2. Gilbertson TA, Damak S, Margolskee RF (2000) The molecular physiology of taste transduction. Curr Opin Neurobiol 10:519–527

    Article  CAS  PubMed  Google Scholar 

  3. Gilbertson TA, Boughter JD Jr, Zhang H, Smith DV (2001) Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci 21:4931–4941

    CAS  PubMed  Google Scholar 

  4. Herness S (2000) Coding in taste receptor cells. The early years of intracellular recordings. Physiol Behav 69:17–27

    Article  CAS  PubMed  Google Scholar 

  5. Lindemann B (1996) Taste reception. Physiol Rev 76:718–766

    CAS  PubMed  Google Scholar 

  6. Herness MS, Gilbertson TA (1999) Cellular mechanisms of taste transduction. Annu Rev Physiol 61:873–900

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto T, Nagai T, Shimura T, Yasoshima Y (1998) Roles of chemical mediators in the taste system. Jpn J Pharmacol 76:325–348

    Article  CAS  PubMed  Google Scholar 

  8. Avenet P, Lindemann B (1988) Amiloride-blockable sodium currents in isolated taste receptor cells. J Membr Biol 105:245–255

    Article  CAS  PubMed  Google Scholar 

  9. Doolin RE, Gilbertson TA (1996) Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue. J Gen Physiol 107:545–554

    Article  CAS  PubMed  Google Scholar 

  10. Garty H, Benos DJ (1988) Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol Rev 68:309–373

    CAS  PubMed  Google Scholar 

  11. Gilbertson TA, Avenet P, Kinnamon SC, Roper SD (1992) Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction. J Gen Physiol 100:803–824

    Article  CAS  PubMed  Google Scholar 

  12. Heck GL, Mierson S, DeSimone JA (1984) Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223:403–405

    Article  CAS  PubMed  Google Scholar 

  13. Mierson S, Olson MM, Tietz AE (1996) Basolateral amiloride-sensitive Na+ transport pathway in rat tongue epithelium. J Neurophysiol 76:1297–1309

    CAS  PubMed  Google Scholar 

  14. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    Article  CAS  PubMed  Google Scholar 

  15. Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature 404:601–604

    Article  CAS  PubMed  Google Scholar 

  16. Hoon MA, Northup JK, Margolskee RF, Ryba NJ (1995) Functional expression of the taste specific G-protein, alpha-gustducin. Biochem J 309:629–636

    CAS  PubMed  Google Scholar 

  17. Kusakabe Y, Abe K, Tanemura K, Emori Y, Arai S (1996) GUST27 and closely related G-protein-coupled receptors are localized in taste buds together with Gi-protein alpha-subunit. Chem Senses 21:335–340

    Article  CAS  PubMed  Google Scholar 

  18. Naim M, Seifert R, Nurnberg B, Grunbaum L, Schultz G (1994) Some taste substances are direct activators of G-proteins. Biochem J 297:451–454

    CAS  PubMed  Google Scholar 

  19. Ruiz-Avila L, McLaughlin SK, Wildman D, McKinnon PJ, Robichon A, Spickofsky N, Margolskee RF (1995) Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature 376:80–85

    Article  CAS  PubMed  Google Scholar 

  20. Spielman AI, Huque T, Nagai H, Whitney G, Brand JG (1994) Generation of inositol phosphates in bitter taste transduction. Physiol Behav 56:1149–1155

    Google Scholar 

  21. Spielman AI, Nagai H, Sunavala G, Dasso M, Breer H, Boekhoff I, Huque T, Whitney G, Brand JG (1996) Rapid kinetics of second messenger production in bitter taste. Am J Physiol 270:C926–C931

    CAS  PubMed  Google Scholar 

  22. Talluri S, Bhatt A, Smith DP (1995) Identification of a Drosophila G protein alpha subunit (dGq alpha-3) expressed in chemosensory cells and central neurons. Proc Natl Acad Sci USA 92:11475–11479

    Article  CAS  PubMed  Google Scholar 

  23. Yan W, Sunavala G, Rosenzweig S, Dasso M, Brand JG, Spielman AI (2001) Bitter taste transduced by PLC-beta(2)-dependent rise in IP(3) and alpha-gustducin-dependent fall in cyclic nucleotides. Am J Physiol Cell Physiol 280:C742–C751

    CAS  PubMed  Google Scholar 

  24. Kolesnikov SS, Margolskee RF (1995) A cyclic-nucleotide-suppressible conductance activated by transducin in taste cells. Nature 376:85–88

    Article  CAS  PubMed  Google Scholar 

  25. Misaka T, Kusakabe Y, Emori Y, Arai S, Abe K (1998) Molecular cloning and taste bud-specific expression of a novel cyclic nucleotide-gated channel. Ann NY Acad Sci 855:150–159

    Article  CAS  PubMed  Google Scholar 

  26. Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B (2001) Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413:631–635

    Article  CAS  PubMed  Google Scholar 

  27. Krizhanovsky V, Agamy O, Naim M (2000) Sucrose-stimulated subsecond transient increase in cGMP level in rat intact circumvallate taste bud cells. Am J Physiol Cell Physiol 279:C120–C125

    CAS  PubMed  Google Scholar 

  28. Rosenzweig S, Yan W, Dasso M, Spielman AI (1999) Possible novel mechanism for bitter taste mediated through cGMP. J Neurophysiol 81:1661–1665

    CAS  PubMed  Google Scholar 

  29. Asanuma N, Nomura H (1995) Cytochemical localization of guanylyl cyclase activity in rabbit taste bud cells. Chem Senses 20:231–237

    Article  CAS  PubMed  Google Scholar 

  30. Duda T, Sharma RK (2004) S100B-modulated Ca2+-dependent ROS-GC1 transduction machinery in the gustatory epithelium: a new mechanism in gustatory transduction. FEBS Lett 577:393–398

    Article  CAS  PubMed  Google Scholar 

  31. Sharma RK, Duda T, Venkataraman V, Koch KW (2004) Calcium-modulated mammalian guanylate cyclase transduction machinery in sensory neurons: a universal concept. Curr Top Biochem Res 6:112–144

    Google Scholar 

  32. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB (1995) Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206

    Article  CAS  PubMed  Google Scholar 

  33. Duda T, Goraczniak R, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Palczewski K, Sitaramayya A, Baehr W, Sharma RK (1996) Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35:8478–8482

    Article  CAS  PubMed  Google Scholar 

  34. Duda T, Goraczniak RM, Sharma RK (1996) Molecular characterization of S100A1–S100B protein in retina and its activation mechanism of bovine photoreceptor guanylate cyclase. Biochemistry 35:6263–6266

    Article  CAS  PubMed  Google Scholar 

  35. Duda T, Goraczniak RM, Pozdnyakov N, Sitaramayya A, Sharma RK (1998) Differential activation of rod outer segment membrane guanylate cyclases, ROS-GC1 and ROS-GC2, by CD-GCAP and identification of the signaling domain. Biochem Biophys Res Commun 242:118–122

    Article  CAS  PubMed  Google Scholar 

  36. Frins S, Bonigk W, Muller F, Kellner R, Koch KW (1996) Functional characterization of a guanylyl cyclase-activating protein from vertebrate rods. Cloning, heterologous expression, and localization. J Biol Chem 271:8022–8027

    Article  CAS  PubMed  Google Scholar 

  37. Kumar VD, Vijay-Kumar S, Krishnan A, Duda T, Sharma RK (1999) A second calcium regulator of rod outer segment membrane guanylate cyclase, ROS-GC1: neurocalcin. Biochemistry 38:12614–12620

    Article  CAS  PubMed  Google Scholar 

  38. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS, Baehr W (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404

    Article  CAS  PubMed  Google Scholar 

  39. Duda T, Venkataraman V, Goraczniak R, Lange C, Koch KW, Sharma RK (1999) Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber’s congenital amaurosis. Biochemistry 38:509–515

    Article  CAS  PubMed  Google Scholar 

  40. Krishnan A, Goraczniak RM, Duda T, Sharma RK (1998) Third calcium-modulated rod outer segment membrane guanylate cyclase transduction mechanism. Mol Cell Biochem 178:251–259

    Article  CAS  PubMed  Google Scholar 

  41. Goraczniak RM, Duda T, Sitaramayya A, Sharma RK (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase. Biochem J 30:455–461

    Google Scholar 

  42. Perchellet JP, Sharma RK (1980) Ectopic alpha-adrenergic mediated accumulation of guanosine 3′, 5′-monophosphate in isolated adrenocortical carcinoma cells. Endocrinology 106:1589–1593

    Article  CAS  PubMed  Google Scholar 

  43. Shanker G, Sharma RK (1980) Characterization of ectopic-adrenergic binding receptors of adrenocortical carcinoma cells. Endocrinology 106:1594–1598

    Article  CAS  PubMed  Google Scholar 

  44. Chalberg SC, Duda T, Rhine JA, Sharma RK (1990) Molecular cloning, sequencing and expression of an alpha 2-adrenergic receptor complementary DNA from rat brain. Mol Cell Biochem 97:161–172

    Article  CAS  PubMed  Google Scholar 

  45. Jaiswal RK, Sharma RK (1985) Purification and biochemical characterization of alpha 2-adrenergic receptor from the rat adrenocortical carcinoma. Biochem Biophys Res Commun 130:58–64

    Article  CAS  PubMed  Google Scholar 

  46. Lanier SM, Downing S, Duzic E, Homcy CJ (1991) Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype. J Biol Chem 266:10470–10478

    CAS  PubMed  Google Scholar 

  47. Nambi P, Aiyar NV, Sharma RK (1982) Solubilization of epinephrine-specific alpha-adrenergic receptors from adrenocortical carcinoma. FEBS Lett 140:98–102

    Article  CAS  PubMed  Google Scholar 

  48. O’Rourke MF, Iversen LJ, Lomasney JW, Bylund DB (1994) Species orthologs of the alpha-2A adrenergic receptor: the pharmacological properties of the bovine and rat receptors differ from the human and porcine receptors. J Pharmacol Exp Ther 271:735–740

    PubMed  Google Scholar 

  49. Wypijewski K, Duda T, Sharma RK (1995) Structural, genetic and pharmacological identity of the rat alpha 2-adrenergic receptor subtype cA2-47 and its molecular characterization in rat adrenal, adrenocortical carcinoma and bovine retina. Mol Cell Biochem 144:181–190

    Article  CAS  PubMed  Google Scholar 

  50. Jaiswal N, Sharma RK (1986) Dual regulation of adenylate cyclase and guanylate cyclase: alpha 2-adrenergic signal transduction in adrenocortical carcinoma cells. Arch Biochem Biophys 249:616–619

    Article  CAS  PubMed  Google Scholar 

  51. Venkataraman V, Duda T, Sharma RK (1998) The alpha(2D/A)-adrenergic receptor-linked membrane guanylate cyclase: a new signal transduction system in the pineal gland. FEBS Lett 427:69–73

    Article  CAS  PubMed  Google Scholar 

  52. Venkataraman V, Nagele R, Duda T, Sharma RK (2000) Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence. Biochemistry 39:6042–6052

    Article  CAS  PubMed  Google Scholar 

  53. Yang RB, Foster DC, Garbers DL, Fülle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308:186–188

    Article  CAS  PubMed  Google Scholar 

  55. Korf HW, Schomerus C, Stehle JH (1998) The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol 146:1–100

    CAS  PubMed  Google Scholar 

  56. Racke K, Krupa H, Schroder H, Vollrath L (1989) In vitro synthesis of dopamine and noradrenaline in the isolated rat pineal gland: day–night variations and effects of electrical stimulation. J Neurochem 53:354–361

    Article  CAS  PubMed  Google Scholar 

  57. Bönigk W, Müller F, Middendorff R, Weyand I, Kaupp UB. Two alternatively spliced forms of the cGMP-gated channel alpha-subunit from cone photoreceptor are expressed in the chick pineal organ. J Neurosci 16:7458–7468

  58. Sautter A, Biel M, Hofmann F (1997) Molecular cloning of cyclic nucleotide-gated cation channel subunits from rat pineal gland. Brain Res Mol Brain Res 48:171–175

    Article  CAS  PubMed  Google Scholar 

  59. Fik-Rymarkiewicz E, Duda T, Sharma RK (2006) Novel frequenin-modulated Ca2+-signaling membrane guanylate cyclase (ROS-GC) transduction pathway in bovine hippocampus. Mol Cell Biochem 291:187–204

    Article  CAS  PubMed  Google Scholar 

  60. Zozulya S, Stryer L (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci USA 89:11569–11573

    Article  CAS  PubMed  Google Scholar 

  61. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389:198–202

    Article  CAS  PubMed  Google Scholar 

  62. Weiergraber OH, Senin II, Philippov PP, Granzin J, Koch KW (2003) Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J Biol Chem 278:22972–22979

    Article  PubMed  Google Scholar 

  63. Ames JB, Tanaka T, Ikura M, Stryer L (1995) Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin. J Biol Chem 270:30909–30913

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M (1995) Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376:444–447

    Article  CAS  PubMed  Google Scholar 

  65. Krishnan A, Venkataraman V, Fik-Rymarkiewicz E, Duda T, Sharma RK (2004) Structural, biochemical, and functional characterization of the calcium sensor neurocalcin delta in the inner retinal neurons and its linkage with the rod outer segment membrane guanylate cyclase transduction system. Biochemistry 43:2708–2723

    Article  CAS  PubMed  Google Scholar 

  66. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan A, Sharma RK (2004) Calcium-modulated ciliary membrane guanylate cyclase transduction machinery: constitution and operational principles. Mol Cell Biochem 267:107–122. Erratum in: Mol Cell Biochem 273:225–226

    Google Scholar 

  67. Hwang JY, Koch KW (2002) The myristoylation of the neuronal Ca2+-sensors guanylate cyclase-activating protein 1 and 2. Biochim Biophys Acta 1600:111–117

    CAS  PubMed  Google Scholar 

  68. Hwang JY, Koch K-W (2002) Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry 41:13021–13028

    Article  CAS  PubMed  Google Scholar 

  69. Olshevskaya EV, Hughes RE, Hurley JB, Dizhoor AM (1997) Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem 272:14327–14333

    Article  CAS  PubMed  Google Scholar 

  70. O’Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD (2002) Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem 27:14227–14237

    Article  Google Scholar 

  71. Chen XL, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, Roder J, Higashida H, Jeromin A (2001) Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J Physiol 532:649–659

    Article  CAS  PubMed  Google Scholar 

  72. Burgoyne RD, O’Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV (2004) Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci 27:203–209 (review)

    Google Scholar 

  73. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  74. Wang CY, Yang F, He X, Chow A, Du J, Russell JT, Lu B (2001) Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release. Neuron 3:99–112

    Article  Google Scholar 

  75. Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R, Mallart A, Galceran J, Canal I, Barbas JA, Ferrus A (1993) Frequenin—a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11:15–28

    Article  CAS  PubMed  Google Scholar 

  76. Olafsson P, Wang T, Lu B (1995) Molecular cloning and functional characterization of the Xenopus Ca(2+)-binding protein frequenin. Proc Natl Acad Sci USA 92:8001–8005

    Article  CAS  PubMed  Google Scholar 

  77. Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM (2002) Modulation of Kv4-encoded K(+) currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem 277:26436–26443

    Article  CAS  PubMed  Google Scholar 

  78. Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA (2001) A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc Natl Acad Sci USA 98:12808–12813

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by USPHS awards: DC 005349 (R. K. S.), and HL084584 (TD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshwar K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R.K., Duda, T. ROS-GC subfamily membrane guanylate cyclase-linked transduction systems: taste, pineal gland and hippocampus. Mol Cell Biochem 334, 199–206 (2010). https://doi.org/10.1007/s11010-009-0334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0334-8

Keywords

Navigation