Abstract
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.
Similar content being viewed by others
References
Navaneethan U, Giannella RA (2008) Mechanisms of infectious diarrhea. Nat Clin Pract Gastroenterol Hepatol 5:637–647
Okoh AI, Osode AN (2008) Enterotoxigenic Escherichia coli (ETEC): a recurring decimal in infants’ and travelers’ diarrhea. Rev Environ Health 23:135–148
Sack DA, Merson MH, Wells JG et al (1975) Diarrhoea associated with heat-stable enterotoxin-producing strains of Escherichia coli. Lancet 2:239–241
Hughes JM, Murad F, Chang B et al (1978) Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature 271:755–756
De Jonge HR (1975) The localization of guanylate cyclase in rat small intestinal epithelium. FEBS Lett 53:237–242
Field M, Graf LH Jr, Laird WJ et al (1978) Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci USA 75:2800–2804
Schulz S, Green CK, Yuen PS et al (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63:941–948
Currie MG, Fok KF, Kato J et al (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89:947–951
Hamra FK, Forte LR, Eber SL et al (1993) Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 90:10464–10468
Schulz S, Lopez MJ, Kuhn M et al (1997) Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest 100:1590–1595
Mann EA, Jump ML, Wu J et al (1997) Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem Biophys Res Commun 239:463–466
Vaandrager AB (2002) Structure and function of the heat-stable enterotoxin receptor/guanylyl cyclase C. Mol Cell Biochem 230:73–83
de Jonge HR (1975) Properties of guanylate cyclase and levels of cyclic GMP in rat small intestinal villous and crypt cells. FEBS Lett 55:143–152
Swenson ES, Mann EA, Jump ML et al (1996) The guanylin/STa receptor is expressed in crypts and apical epithelium throughout the mouse intestine. Biochem Biophys Res Commun 225:1009–1014
Nandi A, Bhandari R, Visweswariah SS (1997) Epitope conservation and immunohistochemical localization of the guanylin/stable toxin peptide receptor, guanylyl cyclase C. J Cell Biochem 66:500–511
Buc E, Vartanian MD, Darcha C et al (2005) Guanylyl cyclase C as a reliable immunohistochemical marker and its ligand Escherichia coli heat-stable enterotoxin as a potential protein-delivering vehicle for colorectal cancer cells. Eur J Cancer 41:1618–1627
Carrithers SL, Barber MT, Biswas S et al (1996) Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc Natl Acad Sci USA 93:14827–14832
Krause WJ, Freeman RH, Fort LR (1990) Autoradiographic demonstration of specific binding sites for E. coli enterotoxin in various epithelia of the North American opossum. Cell Tissue Res 260:387–394
Forte LR, Krause WJ, Freeman RH (1989) Escherichia coli enterotoxin receptors: localization in opossum kidney, intestine, and testis. Am J Physiol 257:F874–F881
Jaleel M, London RM, Eber SL et al (2002) Expression of the receptor guanylyl cyclase C and its ligands in reproductive tissues of the rat: a potential role for a novel signaling pathway in the epididymis. Biol Reprod 67:1975–1980
Krause WJ, Cullingford GL, Freeman RH et al (1994) Distribution of heat-stable enterotoxin/guanylin receptors in the intestinal tract of man and other mammals. J Anat 184(Pt 2):407–417
Hodson CA, Ambrogi IG, Scott RO et al (2006) Polarized apical sorting of guanylyl cyclase C is specified by a cytosolic signal. Traffic 7:456–464
de Sauvage FJ, Horuk R, Bennett G et al (1992) Characterization of the recombinant human receptor for Escherichia coli heat-stable enterotoxin. J Biol Chem 267:6479–6482
Singh S, Singh G, Heim JM et al (1991) Isolation and expression of a guanylate cyclase-coupled heat stable enterotoxin receptor cDNA from a human colonic cell line. Biochem Biophys Res Commun 179:1455–1463
Biswas KH, Shenoy AR, Dutta A, Visweswariah SS (2009) The evolution of guanylyl cyclases as multidomain proteins: conserved features of kinase-cyclase domain fusions. J Mol Evol 68:587–602
Garbers DL, Lowe DG, Dangott LJ et al (1988) The membrane form of guanylate cyclase. Cold Spring Harb Symp Quant Biol 53(Pt 2):993–1003
Forte LR Jr (2004) Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics. Pharmacol Ther 104:137–162
Visweswariah SS, Ramachandran V, Ramamohan S et al (1994) Characterization and partial purification of the human receptor for the heat-stable enterotoxin. Eur J Biochem 219:727–736
Hasegawa M, Hidaka Y, Matsumoto Y et al (1999) Determination of the binding site on the extracellular domain of guanylyl cyclase C to heat-stable enterotoxin. J Biol Chem 274:31713–31718
Hidaka Y, Matsumoto Y, Shimonishi Y (2002) The micro domain responsible for ligand-binding of guanylyl cyclase C. FEBS Lett 526:58–62
Lauber T, Tidten N, Matecko I et al (2009) Design and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C. Protein Eng Des Sel 22:1–7
Hasegawa M, Matsumoto-Ishikawa Y, Hijikata A et al (2005) Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C. Protein J 24:315–325
van den Akker F, Zhang X, Miyagi M et al (2000) Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406:101–104
He X, Chow D, Martick MM et al (2001) Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293:1657–1662
Vaandrager AB, van der Wiel E, Hom ML et al (1994) Heat-stable enterotoxin receptor/guanylyl cyclase C is an oligomer consisting of functionally distinct subunits, which are non-covalently linked in the intestine. J Biol Chem 269:16409–16415
Vaandrager AB, Schulz S, De Jonge HR et al (1993) Guanylyl cyclase C is an N-linked glycoprotein receptor that accounts for multiple heat-stable enterotoxin-binding proteins in the intestine. J Biol Chem 268:2174–2179
Ghanekar Y, Chandrashaker A, Tatu U et al (2004) Glycosylation of the receptor guanylate cyclase C: role in ligand binding and catalytic activity. Biochem J 379:653–663
Koller KJ, de Sauvage FJ, Lowe DG et al (1992) Conservation of the kinase like regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol 12:2581–2590
Deshmane SP, Parkinson SJ, Crupper SS et al (1997) Cytoplasmic domains mediate the ligand-induced affinity shift of guanylyl cyclase C. Biochemistry 36:12921–12929
Rudner XL, Mandal KK, de Sauvage FJ et al (1995) Regulation of cell signaling by the cytoplasmic domains of the heat-stable enterotoxin receptor: identification of autoinhibitory and activating motifs. Proc Natl Acad Sci USA 92:5169–5173
Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J 9:576–596
Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934
Scheeff ED, Eswaran J, Bunkoczi G et al (2009) Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128–138
Bhandari R, Srinivasan N, Mahaboobi M et al (2001) Functional inactivation of the human guanylyl cyclase C receptor: modeling and mutation of the protein kinase-like domain. Biochemistry 40:9196–9206
Kannan N, Taylor SS (2008) Rethinking pseudokinases. Cell 133:204–205
Mukherjee K, Sharma M, Urlaub H et al (2008) CASK functions as a Mg2+-independent neurexin kinase. Cell 133:328–339
Wilson EM, Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34:4696–4701
Thompson DK, Garbers DL (1995) Dominant negative mutations of the guanylyl cyclase-A receptor. Extracellular domain deletion and catalytic domain point mutations. J Biol Chem 270:425–430
Ramamurthy V, Tucker C, Wilkie SE et al (2001) Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J Biol Chem 276:26218–26229
Anantharaman V, Balaji S, Aravind L (2006) The signaling helix: a common functional theme in diverse signaling proteins. Biol Direct 1:25
Saha S, Biswas KH, Kondapalli C et al (2009) The linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C. J Biol Chem 284:27135–27145
Krupinski J, Coussen F, Bakalyar HA et al (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244:1558–1564
Zhang G, Liu Y, Ruoho AE et al (1997) Structure of the adenylyl cyclase catalytic core. Nature 386:247–253
Rauch A, Leipelt M, Russwurm M et al (2008) Crystal structure of the guanylyl cyclase Cya2. Proc Natl Acad Sci USA 105:15720–15725
Winger JA, Derbyshire ER, Lamers MH et al (2008) The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Struct Biol 8:42
Artymiuk PJ, Poirrette AR, Rice DW et al (1997) A polymerase I palm in adenylyl cyclase? Nature 388:33–34
Tesmer JJ, Sprang SR (1998) The structure, catalytic mechanism and regulation of adenylyl cyclase. Curr Opin Struct Biol 8:713–719
Garbers DL (1979) Purification of soluble guanylate cyclase from rat lung. J Biol Chem 254:240–243
Parkinson SJ, Carrithers SL, Waldman SA (1994) Opposing adenine nucleotide-dependent pathways regulate guanylyl cyclase C in rat intestine. J Biol Chem 269:22683–22690
Bakre MM, Ghanekar Y, Visweswariah SS (2000) Homologous desensitization of the human guanylate cyclase C receptor. Cell-specific regulation of catalytic activity. Eur J Biochem 267:179–187
Garbers DL, Chrisman TD, Wiegn P et al (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258
Hakki S, Crane M, Hugues M et al (1993) Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes. Int J Biochem 25:557–566
Scott RO, Thelin WR, Milgram SL (2002) A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J Biol Chem 277:22934–22941
Shimonishi Y, Hidaka Y, Koizumi M et al (1987) Mode of disulfide bond formation of a heat-stable enterotoxin (STh) produced by a human strain of enterotoxigenic Escherichia coli. FEBS Lett 215:165–170
Gariepy J, Judd AK, Schoolnik GK (1987) Importance of disulfide bridges in the structure and activity of Escherichia coli enterotoxin ST1b. Proc Natl Acad Sci USA 84:8907–8911
Smith HW, Halls S (1967) Studies on Escherichia coli enterotoxin. J Pathol Bacteriol 93:531–543
Sato T, Ozaki H, Hata Y et al (1994) Structural characteristics for biological activity of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli: X-ray crystallography of weakly toxic and nontoxic analogs. Biochemistry 33:8641–8650
Tian X, Michal AM, Li P et al (2008) STa peptide analogs for probing guanylyl cyclase C. Biopolymers 90:713–723
Fan X, Hamra FK, London RM et al (1997) Structure and activity of uroguanylin and guanylin from the intestine and urine of rats. Am J Physiol 273:E957–E964
Hamra FK, Krause WJ, Eber SL et al (1996) Opossum colonic mucosa contains uroguanylin and guanylin peptides. Am J Physiol 270:G708–G716
Hamra FK, Fan X, Krause WJ et al (1996) Prouroguanylin and proguanylin: purification from colon, structure, and modulation of bioactivity by proteases. Endocrinology 137:257–265
de Sauvage FJ, Keshav S, Kuang WJ et al (1992) Precursor structure, expression, and tissue distribution of human guanylin. Proc Natl Acad Sci USA 89:9089–9093
Forte LR, Eber SL, Turner JT et al (1993) Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine monophosphate. J Clin Invest 91:2423–2428
Leinders-Zufall T, Cockerham RE, Michalakis S et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512
Duda T, Sharma RK (2009) Ca2+-modulated ONE-GC odorant signal transduction. FEBS Lett 583:1327–1330
Cockerham RE, Leinders-Zufall T, Munger SD et al (2009) Functional analysis of the guanylyl cyclase type D signaling system in the olfactory epithelium. Ann N Y Acad Sci 1170:173–176
Joo NS, London RM, Kim HD et al (1998) Regulation of intestinal Cl- and HCO3-secretion by uroguanylin. Am J Physiol 274:G633–G644
Hamra FK, Eber SL, Chin DT et al (1997) Regulation of intestinal uroguanylin/guanylin receptor-mediated responses by mucosal acidity. Proc Natl Acad Sci USA 94:2705–2710
Lucas ML, Schneider W, Haberich FJ et al (1975) Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum. Proc R Soc Lond B Biol Sci 192:39–48
Forte LR, Eber SL, Fan X et al (1999) Lymphoguanylin: cloning and characterization of a unique member of the guanylin peptide family. Endocrinology 140:1800–1806
London RM, Eber SL, Visweswariah SS et al (1999) Structure and activity of OK-GC: a kidney receptor guanylate cyclase activated by guanylin peptides. Am J Physiol 276:F882–F891
Mann EA, Swenson ES, Copeland NG et al (1996) Localization of the guanylyl cyclase C gene to mouse chromosome 6 and human chromosome 12p12. Genomics 34:265–267
Pearlman JM, Prawer SP, Barber MT et al (2000) A splice variant of the transcript for guanylyl cyclase C is expressed in human colon and colorectal cancer cells. Dig Dis Sci 45:298–305
Mann EA, Jump ML, Glenella RA (1996) Cell line-specific transcriptional activation of the promoter of the human guanylyl cyclase C/heat-stable enterotoxin/receptor gene. Biochim Biophys Acta 1305:7–10
Park J, Schulz S, Waldman SA (2000) Intestine-specific activity of the human guanylyl cyclase C promoter is regulated by Cdx2. Gastroenterology 119:89–96
Swenson ES, Mann EA, Jump ML et al (1999) Hepatocyte nuclear factor-4 regulates intestinal expression of the guanylin/heat-stable toxin receptor. Am J Physiol 276:G728–G736
Roy N, Guruprasad MR, Kondaiah P et al (2001) Protein kinase C regulates transcription of the human guanylate cyclase C gene. Eur J Biochem 268:2160–2171
Nehra D, Howell P, Williams CP et al (1999) Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 44:598–602
Vaezi MF, Richter JE (1996) Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111:1192–1199
Silberg DG, Sullivan J, Kang E et al (2002) Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122:689–696
Debruyne PR, Witek M, Gong L et al (2006) Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology 130:1191–1206
Potter LR, Hunter T (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18:2164–2172
Potthast R, Potter LR (2005) Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptors. Peptides 26:1001–1008
Crane JK, Shanks KL (1996) Phosphorylation and activation of the intestinal guanylyl cyclase receptor for Escherichia coli heat-stable toxin by protein kinase C. Mol Cell Biochem 165:111–120
Wada A, Hasegawa M, Matsumoto K et al (1996) The significance of Ser1029 of the heat-stable enterotoxin receptor (STaR): relation of STa-mediated guanylyl cyclase activation and signaling by phorbol myristate acetate. FEBS Lett 384:75–77
Bhandari R, Mathew R, Vijayachandra K et al (2000) Tyrosine phosphorylation of the human guanylyl cyclase C receptor. J Biosci 25:339–346
Basu N, Bhandari R, Natarajan VT et al (2009) Cross talk between receptor guanylyl cyclase C and c-src tyrosine kinase regulates colon cancer cell cytostasis. Mol Cell Biol 29:5277–5289
Hasegawa M, Hidaka Y, Wada A et al (1999) The relevance of N-linked glycosylation to the binding of a ligand to guanylate cyclase C. Eur J Biochem 263:338–346
Nandi A, Mathew R, Visweswariah SS (1996) Expression of the extracellular domain of the human heat-stable enterotoxin receptor in Escherichia coli and generation of neutralizing antibodies. Protein Expr Purif 8:151–159
Potter LR, Garbers DL (1992) Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem 267:14531–14534
Ghanekar Y, Chandrashaker A, Visweswariah SS (2003) Cellular refractoriness to the heat-stable enterotoxin peptide is associated with alterations in levels of the differentially glycosylated forms of guanylyl cyclase C. Eur J Biochem 270:3848–3857
Bakre MM, Visweswariah SS (1997) Dual regulation of heat-stable enterotoxin-mediated cGMP accumulation in T84 cells by receptor desensitization and increased phosphodiesterase activity. FEBS Lett 408:345–349
Bakre MM, Sopory S, Visweswariah SS (2000) Expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) in human colonic epithelial cells: role in the induction of cellular refractoriness to the heat-stable enterotoxin peptide. J Cell Biochem 77:159–167
Gazzano H, Wu HI, Waldman SA (1991) Activation of particulate guanylate cyclase by Escherichia coli heat-stable enterotoxin is regulated by adenine nucleotides. Infect Immun 59:1552–1557
Katwa LC, Parker CD, Dybing JK et al (1992) Nucleotide regulation of heat-stable enterotoxin receptor binding and of guanylate cyclase activation. Biochem J 283(Pt 3):727–735
Vaandrager AB, van der Wiel E, de Jonge HR (1993) Heat-stable enterotoxin activation of immunopurified guanylyl cyclase C. Modulation by adenine nucleotides. J Biol Chem 268:19598–19603
Bhandari R, Suguna K, Visweswariah SS (1999) Guanylyl cyclase C receptor: regulation of catalytic activity by ATP. Biosci Rep 19:179–188
Vijayachandra K, Guruprasad M, Bhandari R et al (2000) Biochemical characterization of the intracellular domain of the human guanylyl cyclase C receptor provides evidence for a catalytically active homotrimer. Biochemistry 39:16075–16083
Jaleel M, Saha S, Shenoy AR et al (2006) The kinase homology domain of receptor guanylyl cyclase C: ATP binding and identification of an adenine nucleotide sensitive site. Biochemistry 45:1888–1898
Parkinson SJ, Alekseev AE, Gomez LA et al (1997) Interruption of Escherichia coli heat-stable enterotoxin-induced guanylyl cyclase signaling and associated chloride current in human intestinal cells by 2-chloroadenosine. J Biol Chem 272:754–758
Parkinson SJ, Waldman SA (1996) An intracellular adenine nucleotide binding site inhibits guanyly cyclase C by a guanine nucleotide-dependent mechanism. Biochemistry 35:3213–3221
Jaleel M, Shenoy AR, Visweswariah SS (2004) Tyrphostins are inhibitors of guanylyl and adenylyl cyclases. Biochemistry 43:8247–8255
Kots AY, Choi BK, Estrella-Jimenez ME et al (2008) Pyridopyrimidine derivatives as inhibitors of cyclic nucleotide synthesis: Application for treatment of diarrhea. Proc Natl Acad Sci USA 105:8440–8445
Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824
Munzel T, Feil R, Mulsch A et al (2003) Physiology and pathophysiology of vascular signaling controlled by guanosine 3′, 5′-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 108:2172–2183
Rybalkin SD, Yan C, Bornfeldt KE et al (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93:280–291
Forte LR (1999) Guanylin regulatory peptides: structures, biological activities mediated by cyclic GMP and pathobiology. Regul Pept 81:25–39
Vaandrager AB, De Jonge HR (1994) Effect of cyclic GMP on intestinal transport. Adv Pharmacol 26:253–283
Schultheis PJ, Clarke LL, Meneton P et al (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19:282–285
Vaandrager AB, Bot AG, De Jonge HR (1997) Guanosine 3′, 5′-cyclic monophosphate-dependent protein kinase II mediates heat-stable enterotoxin-provoked chloride secretion in rat intestine. Gastroenterology 112:437–443
Vaandrager AB, Bot AG, Ruth P et al (2000) Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 118:108–114
Trezise AE, Buchwald M (1991) In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature 353:434–437
Higgins CF (2001) ABC transporters: physiology, structure and mechanism–an overview. Res Microbiol 152:205–210
Ostedgaard LS, Baldursson O, Welsh MJ (2001) Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by its R domain. J Biol Chem 276:7689–7692
Vaandrager AB, Tilly BC, Smolenski A et al (1997) cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta. J Biol Chem 272:4195–4200
Vaandrager AB, Smolenski A, Tilly BC et al (1998) Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc Natl Acad Sci USA 95:1466–1471
Hayashi M, Kita K, Ohashi Y et al (2007) Phosphodiesterase isozymes involved in regulation of HCO3-secretion in isolated mouse duodenum in vitro. Biochem Pharmacol 74:1507–1513
O’Grady SM, Jiang X, Maniak PJ et al (2002) Cyclic AMP-dependent Cl secretion is regulated by multiple phosphodiesterase subtypes in human colonic epithelial cells. J Membr Biol 185:137–144
Forte LR, Thorne PK, Eber SL et al (1992) Stimulation of intestinal Cl- transport by heat-stable enterotoxin: activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 263:C607–C615
Selvaraj NG, Prasad R, Goldstein JL et al (2000) Evidence for the presence of cGMP-dependent protein kinase-II in human distal colon and in T84, the colonic cell line. Biochim Biophys Acta 1498:32–43
Tousson A, Fuller CM, Benos DJ (1996) Apical recruitment of CFTR in T84 cells is dependent on cAMP and microtubules but not Ca2+ or microfilaments. J Cell Sci 109(Pt 6):1325–1334
Golin-Bisello F, Bradbury N, Ameen N (2005) STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 289:C708–C716
Lucas ML (2001) A reconsideration of the evidence for Escherichia coli STa (heat stable) enterotoxin-driven fluid secretion: a new view of STa action and a new paradigm for fluid absorption. J Appl Microbiol 90:7–26
Smolenski A, Schultess J, Danielewski O et al (2004) Quantitative analysis of the cardiac fibroblast transcriptome-implications for NO/cGMP signaling. Genomics 83:577–587
Sawada N, Itoh H, Miyashita K et al (2009) cGMP kinase and RhoA Ser188 phosphorylation integrate pro- and anti-fibrotic signals in blood vessels. Mol Cell Biol 29:6018–6032
Hofmann F, Bernhard D, Lukowski R et al (2009) cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 191:137–162
Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020
Eastwood GL (1995) A review of gastrointestinal epithelial renewal and its relevance to the development of adenocarcinomas of the gastrointestinal tract. J Clin Gastroenterol 21(Suppl 1):S1–S11
Shailubhai K, Yu HH, Karunanandaa K et al (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151–5157
Cohen MB, Hawkins JA, Witte DP (1998) Guanylin mRNA expression in human intestine and colorectal adenocarcinoma. Lab Invest 78:101–108
Thompson WJ, Piazza GA, Li H et al (2000) Exisulind induction of apoptosis involves guanosine 3′, 5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. Cancer Res 60:3338–3342
Pitari GM, Di Guglielmo MD, Park J et al (2001) Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci USA 98:7846–7851
Pitari GM, Zingman LV, Hodgson DM et al (2003) Bacterial enterotoxins are associated with resistance to colon cancer. Proc Natl Acad Sci USA 100:2695–2699
Pitari GM, Lin JE, Shah FJ et al (2008) Enterotoxin preconditioning restores calcium-sensing receptor-mediated cytostasis in colon cancer cells. Carcinogenesis 29:1601–1607
Pitari GM, Baksh RI, Harris DM et al (2005) Interruption of homologous desensitization in cyclic guanosine 3′, 5′-monophosphate signaling restores colon cancer cytostasis by bacterial enterotoxins. Cancer Res 65:11129–11135
Crane MR, Hugues M, O’Hanley PD et al (1992) Identification of two affinity states of low affinity receptors for Escherichia coli heat-stable enterotoxin: correlation of occupation of lower affinity state with guanylate cyclase activation. Mol Pharmacol 41:1073–1080
Hakki S, Robertson DC, Waldman SA (1993) A 56 kDa binding protein for Escherichia coli heat-stable enterotoxin isolated from the cytoskeleton of rat intestinal membrane does not possess guanylate cyclase activity. Biochim Biophys Acta 1152:1–8
Mann EA, Cohen MB, Giannella RA (1993) Comparison of receptors for Escherichia coli heat-stable enterotoxin: novel receptor present in IEC-6 cells. Am J Physiol 264:G172–G178
Carey RM, Smith JR, Ortt EM (1976) Gastrointestinal control of sodium excretion in sodium-depleted conscious rabbits. Am J Physiol 230:1504–1508
Mu JY, Hansson GC, Bergstrom G et al (1995) Renal sodium excretion after oral or intravenous sodium loading in sodium-deprived normotensive and spontaneously hypertensive rats. Acta Physiol Scand 153:169–177
Carrithers SL, Ott CE, Hill MJ et al (2004) Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor. Kidney Int 65:40–53
Carrithers SL, Hill MJ, Johnson BR et al (1999) Renal effects of uroguanylin and guanylin in vivo. Braz J Med Biol Res 32:1337–1344
Steinbrecher KA, Wowk SA, Rudolph JA et al (2002) Targeted inactivation of the mouse guanylin gene results in altered dynamics of colonic epithelial proliferation. Am J Pathol 161:2169–2178
Pitari GM, Li P, Lin JE et al (2007) The paracrine hormone hypothesis of colorectal cancer. Clin Pharmacol Ther 82:441–447
Li P, Lin JE, Chervoneva I et al (2007) Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase C restricts the proliferating compartment in intestine. Am J Pathol 171:1847–1858
Li P, Schulz S, Bombonati A et al (2007) Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology 133:599–607
Mann EA, Steinbrecher KA, Stroup C et al (2005) Lack of guanylyl cyclase C, the receptor for Escherichia coli heat-stable enterotoxin, results in reduced polyp formation and increased apoptosis in the multiple intestinal neoplasia (Min) mouse model. Int J Cancer 116:500–505
Acknowledgements
The work in the authors’ laboratory has been supported by the Departments of Science and Technology, and Biotechnology, Government of India. NB is a Junior Research Fellow of the Council of Scientific and Industrial Research, and NA is supported by a fellowship from the Indian Institute of Science. We thank all the current and past members of the laboratory for their stimulating discussions and their outstanding enthusiasm in pursuing aspects of GC-C regulation, its ligands and signaling mechanisms.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Basu, N., Arshad, N. & Visweswariah, S.S. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem 334, 67–80 (2010). https://doi.org/10.1007/s11010-009-0324-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11010-009-0324-x