Skip to main content
Log in

New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The cellular counterpart of the “soluble” guanylyl cyclase found in tissue homogenates over 30 years ago is now recognized as the physiological receptor for nitric oxide (NO). The ligand-binding site is a prosthetic haem group that, when occupied by NO, induces a conformational change in the protein that propagates to the catalytic site, triggering conversion of GTP into cGMP. This review focuses on recent research that takes this basic information forward to the beginnings of a quantitative depiction of NO signal transduction, analogous to that achieved for other major transmitters. At its foundation is an explicit enzyme-linked receptor mechanism for NO-activated guanylyl cyclase that replicates all its main properties. In cells, NO signal transduction is subject to additional, activity-dependent modifications, notably through receptor desensitization and changes in the activity of cGMP-hydrolyzing phosphodiesterases. The measurement of these parameters under varying conditions in rat platelets has made it possible to formulate a cellular model of NO-cGMP signaling. The model helps explain cellular responses to NO and their modification by therapeutic agents acting on the guanylyl cyclase or phosphodiesterase limbs of the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  2. Ignarro LJ (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 19:51–71

    Article  CAS  PubMed  Google Scholar 

  3. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  4. Rand MJ, Li CG (1995) Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol 57:659–682

    Article  CAS  PubMed  Google Scholar 

  5. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  6. Russwurm M, Behrends S, Harteneck C, Koesling D (1998) Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J 335:125–130

    CAS  PubMed  Google Scholar 

  7. Gibb BJ, Wykes V, Garthwaite J (2003) Properties of NO-activated guanylyl cyclases expressed in cells. Br J Pharmacol 139:1032–1040

    Article  CAS  PubMed  Google Scholar 

  8. Wykes V, Garthwaite J (2004) Membrane-association and the sensitivity of guanylyl cyclase-coupled receptors to nitric oxide. Br J Pharmacol 141:1087–1090

    Article  CAS  PubMed  Google Scholar 

  9. Russwurm M, Wittau N, Koesling D (2001) Guanylyl cyclase/PSD-95 interaction: targeting of the NO-sensitive alpha2beta1 guanylyl cyclase to synaptic membranes. J Biol Chem 276:44647–44652

    Article  CAS  PubMed  Google Scholar 

  10. Venema RC, Venema VJ, Ju H, Harris MB, Snead C, Jilling T, Dimitropoulou C, Maragoudakis ME, Catravas JD (2003) Novel complexes of guanylate cyclase with heat shock protein 90 and nitric oxide synthase. Am J Physiol Heart Circ Physiol 285:H669–H678

    CAS  PubMed  Google Scholar 

  11. Papapetropoulos A, Zhou Z, Gerassimou C, Yetik G, Venema RC, Roussos C, Sessa WC, Catravas JD (2005) Interaction between the 90-kDa heat shock protein and soluble guanylyl cyclase: physiological significance and mapping of the domains mediating binding. Mol Pharmacol 68:1133–1141

    Article  CAS  PubMed  Google Scholar 

  12. Nedvetsky PI, Meurer S, Opitz N, Nedvetskaya TY, Muller H, Schmidt HH (2008) Heat shock protein 90 regulates stabilization rather than activation of soluble guanylate cyclase. FEBS Lett 582:327–331

    Article  CAS  PubMed  Google Scholar 

  13. Balashova N, Chang FJ, Lamothe M, Sun Q, Beuve A (2005) Characterization of a novel type of endogenous activator of soluble guanylyl cyclase. J Biol Chem 280:2186–2196

    Article  CAS  PubMed  Google Scholar 

  14. Meurer S, Pioch S, Wagner K, Muller-Esterl W, Gross S (2004) AGAP1, a novel binding partner of nitric oxide-sensitive guanylyl cyclase. J Biol Chem 279:49346–49354

    Article  CAS  PubMed  Google Scholar 

  15. Zabel U, Kleinschnitz C, Oh P, Nedvetsky P, Smolenski A, Muller H, Kronich P, Kugler P, Walter U, Schnitzer JE, Schmidt HH (2002) Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat Cell Biol 4:307–311

    Article  CAS  PubMed  Google Scholar 

  16. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    Article  CAS  PubMed  Google Scholar 

  17. Sunahara RK, Beuve A, Tesmer JJ, Sprang SR, Garbers DL, Gilman AG (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 273:16332–16338

    Article  CAS  PubMed  Google Scholar 

  18. Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG (1999) The interactions of adenylate cyclases with P-site inhibitors. Trends Pharmacol Sci 20:205–210

    Article  CAS  PubMed  Google Scholar 

  19. Bellamy TC, Garthwaite J (2002) The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells. Mol Cell Biochem 230:165–176

    Article  CAS  PubMed  Google Scholar 

  20. Franks KM, Bartol TM Jr, Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83:2333–2348

    Article  CAS  PubMed  Google Scholar 

  21. Bellamy TC, Griffiths C, Garthwaite J (2002) Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J Biol Chem 277:31801–31807

    Article  CAS  PubMed  Google Scholar 

  22. Griffiths C, Wykes V, Bellamy TC, Garthwaite J (2003) A new and simple method for delivering clamped nitric oxide concentrations in the physiological range: application to activation of guanylyl cyclase-coupled nitric oxide receptors. Mol Pharmacol 64:1349–1356

    Article  CAS  PubMed  Google Scholar 

  23. Russwurm M, Koesling D (2005) Purification and characterization of NO-sensitive guanylyl cyclase. Methods Enzymol 396:492–501

    Article  CAS  PubMed  Google Scholar 

  24. Roy B, Halvey EJ, Garthwaite J (2008) An enzyme-linked receptor mechanism for nitric oxide-activated guanylyl cyclase. J Biol Chem 283:18841–18851

    Article  CAS  PubMed  Google Scholar 

  25. Wedel B, Humbert P, Harteneck C, Foerster J, Malkewitz J, Bohme E, Schultz G, Koesling D (1994) Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA 91:2592–2596

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Y, Schelvis JP, Babcock GT, Marletta MA (1998) Identification of histidine 105 in the beta1 subunit of soluble guanylate cyclase as the heme proximal ligand. Biochemistry 37:4502–4509

    Article  CAS  PubMed  Google Scholar 

  27. Ma X, Sayed N, Beuve A, van den Akker F (2007) NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO J 26:578–588

    Article  CAS  PubMed  Google Scholar 

  28. Dessauer CW, Gilman AG (1997) The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition. J Biol Chem 272:27787–27795

    Article  CAS  PubMed  Google Scholar 

  29. Colquhoun D (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125:924–947

    Article  CAS  PubMed  Google Scholar 

  30. Makino R, Matsuda H, Obayashi E, Shiro Y, Iizuka T, Hori H (1999) EPR characterization of axial bond in metal center of native and cobalt-substituted guanylate cyclase. J Biol Chem 274:7714–7723

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Brandish PE, Ballou DP, Marletta MA (1999) A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci USA 96:14753–14758

    Article  CAS  PubMed  Google Scholar 

  32. Kharitonov VG, Russwurm M, Magde D, Sharma VS, Koesling D (1997) Dissociation of nitric oxide from soluble guanylate cyclase. Biochem Biophys Res Commun 239:284–286

    Article  CAS  PubMed  Google Scholar 

  33. Russwurm M, Mergia E, Mullershausen F, Koesling D (2002) Inhibition of deactivation of NO-sensitive guanylyl cyclase accounts for the sensitizing effect of YC-1. J Biol Chem 277:24883–24888

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt P, Schramm M, Schroder H, Stasch JP (2003) Mechanisms of nitric oxide independent activation of soluble guanylyl cyclase. Eur J Pharmacol 468:167–174

    Article  CAS  PubMed  Google Scholar 

  35. Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196

    CAS  PubMed  Google Scholar 

  36. Brandwein HJ, Lewicki JA, Waldman SA, Murad F (1982) Effect of GTP analogues on purified soluble guanylate cyclase. J Biol Chem 257:1309–1311

    CAS  PubMed  Google Scholar 

  37. Ruiz-Stewart I, Tiyyagura SR, Lin JE, Kazerounian S, Pitari GM, Schulz S, Martin E, Murad F, Waldman SA (2004) Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. Proc Natl Acad Sci USA 101:37–42

    Article  CAS  PubMed  Google Scholar 

  38. Garthwaite J (2005) Dynamics of cellular NO-cGMP signaling. Front Biosci 10:1868–1880

    Article  CAS  PubMed  Google Scholar 

  39. Bellamy TC, Garthwaite J (2001) Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells. J Biol Chem 276:4287–4292

    Article  CAS  PubMed  Google Scholar 

  40. Wood J, Garthwaite J (1994) Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33:1235–1244

    Article  CAS  PubMed  Google Scholar 

  41. Mo E, Amin H, Bianco IH, Garthwaite J (2004) Kinetics of a cellular nitric oxide/cGMP/phosphodiesterase-5 pathway. J Biol Chem 279:26149–26158

    Article  CAS  PubMed  Google Scholar 

  42. Bernengo JC, Collet C, Jacquemond V (2001) Intracellular Mg2+ diffusion within isolated rat skeletal muscle fibers. Biophys Chem 89:35–51

    Article  CAS  PubMed  Google Scholar 

  43. Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188

    CAS  PubMed  Google Scholar 

  44. Olesen S-P, Drejer J, Axelsson O, Moldt P, Bang L, Nielsen-Kudsk JE, Busse R, Mulsch A (1998) Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Br J Pharmacol 123:299–309

    Article  CAS  PubMed  Google Scholar 

  45. Schrammel A, Behrends S, Schmidt K, Koesling D, Mayer B (1996) Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol 50:1–5

    CAS  PubMed  Google Scholar 

  46. Bellamy TC, Garthwaite J (2002) Pharmacology of the nitric oxide receptor, soluble guanylyl cyclase, in cerebellar cells. Br J Pharmacol 136:95–103

    Article  CAS  PubMed  Google Scholar 

  47. Gupte SA, Rupawalla T, Phillibert D Jr, Wolin MS (1999) NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO. Am J Physiol 277:L1124–L1132

    CAS  PubMed  Google Scholar 

  48. Iesaki T, Gupte SA, Wolin MS (1999) A flavoprotein mechanism appears to prevent an oxygen-dependent inhibition of cGMP-associated nitric oxide-elicited relaxation of bovine coronary arteries. Circ Res 85:1027–1031

    CAS  PubMed  Google Scholar 

  49. Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84:4226–4233

    CAS  PubMed  Google Scholar 

  50. Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J 15:6863–6868

    CAS  PubMed  Google Scholar 

  51. Friebe A, Koesling D (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 53:123–127

    CAS  PubMed  Google Scholar 

  52. Galle J, Zabel U, Hubner U, Hatzelmann A, Wagner B, Wanner C, Schmidt HH (1999) Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity. Br J Pharmacol 127:195–203

    Article  CAS  PubMed  Google Scholar 

  53. Friebe A, Mullershausen F, Smolenski A, Walter U, Schultz G, Koesling D (1998) YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Mol Pharmacol 54:962–967

    CAS  PubMed  Google Scholar 

  54. Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schroder H, Schroeder W, Stahl E, Steinke W, Straub A, Schramm M (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410:212–215

    Article  CAS  PubMed  Google Scholar 

  55. Mullershausen F, Russwurm M, Friebe A, Koesling D (2004) Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272. Circulation 109:1711–1713

    Article  CAS  PubMed  Google Scholar 

  56. Bischoff E, Stasch JP (2004) Effects of the sGC stimulator BAY 41-2272 are not mediated by phosphodiesterase 5 inhibition. Circulation 110:e320–e321

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt K, Schrammel A, Koesling D, Mayer B (2001) Molecular mechanisms involved in the synergistic activation of soluble guanylyl cyclase by YC-1 and nitric oxide in endothelial cells. Mol Pharmacol 59:220–224

    CAS  PubMed  Google Scholar 

  58. Ignarro LJ, Wood KS, Wolin MS (1982) Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc Natl Acad Sci USA 79:2870–2873

    Article  CAS  PubMed  Google Scholar 

  59. Stasch JP, Schmidt P, Alonso-Alija C, Apeler H, Dembowsky K, Haerter M, Heil M, Minuth T, Perzborn E, Pleiss U, Schramm M, Schroeder W, Schroder H, Stahl E, Steinke W, Wunder F (2002) NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 136:773–783

    Article  CAS  PubMed  Google Scholar 

  60. Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, Meurer AKHSS, Deile M, Taye A, Knorr A, Lapp H, Muller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Muller-Esterl W, Schmidt HH (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116:2552–2561

    Article  CAS  PubMed  Google Scholar 

  61. Schindler U, Strobel H, Schonafinger K, Linz W, Lohn M, Martorana PA, Rutten H, Schindler PW, Busch AE, Sohn M, Topfer A, Pistorius A, Jannek C, Mulsch A (2006) Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol Pharmacol 69:1260–1268

    Article  CAS  PubMed  Google Scholar 

  62. Craven PA, DeRubertis FR (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253:8433–8443

    CAS  PubMed  Google Scholar 

  63. Roy B, Mo E, Vernon J, Garthwaite J (2008) Probing the presence of the ligand-binding haem in cellular nitric oxide receptors. Br J Pharmacol 153:1495–1504

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt PM, Schramm M, Schroder H, Wunder F, Stasch JP (2004) Identification of residues crucially involved in the binding of the heme moiety of soluble guanylate cyclase. J Biol Chem 279:3025–3032

    Article  CAS  PubMed  Google Scholar 

  65. Cary SP, Winger JA, Marletta MA (2005) Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc Natl Acad Sci USA 102:13064–13069

    Article  CAS  PubMed  Google Scholar 

  66. Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. EMBO J 23:4443–4450

    Article  CAS  PubMed  Google Scholar 

  67. Makino R, Obayashi E, Homma N, Shiro Y, Hori H (2003) YC-1 facilitates release of the proximal His residue in the NO and CO complexes of soluble guanylate cyclase. J Biol Chem 278:11130–11137

    Article  CAS  PubMed  Google Scholar 

  68. Bellamy TC, Wood J, Goodwin DA, Garthwaite J (2000) Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci USA 97:2928–2933

    Article  CAS  PubMed  Google Scholar 

  69. Roy B, Garthwaite J (2006) Nitric oxide activation of guanylyl cyclase in cells revisited. Proc Natl Acad Sci USA 103:12185–12190

    Article  CAS  PubMed  Google Scholar 

  70. Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ (1981) Evidence for the inhibitory role of guanosine 3′, 5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57:946–955

    CAS  PubMed  Google Scholar 

  71. Mullershausen F, Russwurm M, Thompson WJ, Liu L, Koesling D, Friebe A (2001) Rapid nitric oxide-induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme. J Cell Biol 155:271–278

    Article  CAS  PubMed  Google Scholar 

  72. Bellamy TC, Garthwaite J (2001) “cAMP-specific” phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Mol Pharmacol 59:54–61

    CAS  PubMed  Google Scholar 

  73. Halvey EJ, Vernon J, Roy B, Garthwaite J (2009) Mechanisms of activity-dependent plasticity in cellular NO-cGMP signaling. J Biol Chem 284:25630–25641

    Google Scholar 

  74. Lawson DM, Stevenson CE, Andrew CR, Eady RR (2000) Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase. EMBO J 19:5661–7561

    Article  CAS  PubMed  Google Scholar 

  75. Breitwieser GE, Szabo G (1988) Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. J Gen Physiol 91:469–493

    Article  CAS  PubMed  Google Scholar 

  76. Hatakeyama K, Harada T, Kagamiyama H (1992) IMP dehydrogenase inhibitors reduce intracellular tetrahydrobiopterin levels through reduction of intracellular GTP levels. Indications of the regulation of GTP cyclohydrolase I activity by restriction of GTP availability in the cells. J Biol Chem 267:20734–20739

    CAS  PubMed  Google Scholar 

  77. Otero AD (1990) Transphosphorylation and G protein activation. Biochem Pharmacol 39:1399–1404

    Article  CAS  PubMed  Google Scholar 

  78. Horie M, Irisawa H (1989) Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. J Physiol 408:313–332

    CAS  PubMed  Google Scholar 

  79. Keynes RG, Griffiths C, Garthwaite J (2003) Superoxide-dependent consumption of nitric oxide in biological media may confound in vitro experiments. Biochem J 369:399–406

    Article  CAS  PubMed  Google Scholar 

  80. Corbin JD, Blount MA, Weeks JL, Beasley A, Kuhn KP, Ho YS, Saidi LF, Hurley JH, Kotera J, Francis SH (2003) [3H]sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol Pharmacol 63:1364–1372

    Article  CAS  PubMed  Google Scholar 

  81. Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D (2003) Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol 160:719–727

    Article  CAS  PubMed  Google Scholar 

  82. Okada D, Asakawa S (2002) Allosteric activation of cGMP-specific, cGMP-binding phosphodiesterase (PDE5) by cGMP. Biochemistry 41:9672–9679

    Article  CAS  PubMed  Google Scholar 

  83. Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469–478

    Article  CAS  PubMed  Google Scholar 

  84. Wyatt TA, Naftilan AJ, Francis SH, Corbin JD (1998) ANF elicits phosphorylation of the cGMP phosphodiesterase in vascular smooth muscle cells. Am J Physiol 274:H448–H455

    CAS  PubMed  Google Scholar 

  85. Mullershausen F, Russwurm M, Koesling D, Friebe A (2004) In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation. Mol Biol Cell 15:4023–4030

    Article  CAS  PubMed  Google Scholar 

  86. Gibson A (2001) Phosphodiesterase 5 inhibitors and nitrergic transmission-from zaprinast to sildenafil. Eur J Pharmacol 411:1–10

    Article  CAS  PubMed  Google Scholar 

  87. Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM (1998) Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J Urol 159:2164–2171

    Article  CAS  PubMed  Google Scholar 

  88. Thompson CS, Mumtaz FH, Khan MA, Wallis RM, Mikhailidis DP, Morgan RJ, Angelini GD, Jeremy JY (2001) The effect of sildenafil on corpus cavernosal smooth muscle relaxation and cyclic GMP formation in the diabetic rabbit. Eur J Pharmacol 425:57–64

    Article  CAS  PubMed  Google Scholar 

  89. Carter AJ, Ballard SA, Naylor AM (1998) Effect of the selective phosphodiesterase type 5 inhibitor sildenafil on erectile dysfunction in the anesthetized dog. J Urol 160:242–246

    Article  CAS  PubMed  Google Scholar 

  90. Kalsi JS, Rees RW, Hobbs AJ, Royle M, Kell PD, Ralph DJ, Moncada S, Cellek S (2003) BAY41–2272, a novel nitric oxide independent soluble guanylate cyclase activator, relaxes human and rabbit corpus cavernosum in vitro. J Urol 169:761–766

    Article  CAS  PubMed  Google Scholar 

  91. Baracat JS, Teixeira CE, Okuyama CE, Priviero FB, Faro R, Antunes E, De Nucci G (2003) Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41-2272 in human and rabbit corpus cavernosum. Eur J Pharmacol 477:163–169

    Article  CAS  PubMed  Google Scholar 

  92. Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA 98:13049–13054

    Article  CAS  PubMed  Google Scholar 

  93. Fischmeister R, Castro LR, bi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828

    Article  CAS  PubMed  Google Scholar 

  94. Russwurm M, Mullershausen F, Friebe A, Jager R, Russwurm C, Koesling D (2007) Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. Biochem J 407:69–77

    Article  CAS  PubMed  Google Scholar 

  95. Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci USA 105:365–370

    Article  CAS  PubMed  Google Scholar 

  96. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in my laboratory is supported by a programme grant from The Wellcome Trust (reference 081512/Z/06/Z). I would also like to acknowledge the important contributions made (in chronological order) by Tomas Bellamy, John Wood, Victoria Wykes, Barry Gibb, Charmaine Griffiths, Elaine Mo, Hemisha Amin, Brijesh Roy, Jeffrey Vernon, and Edward Halvey to the research by our group on NO-activated guanylyl cyclase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Garthwaite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garthwaite, J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol Cell Biochem 334, 221–232 (2010). https://doi.org/10.1007/s11010-009-0318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0318-8

Keywords

Navigation