Skip to main content
Log in

Downregulation of CREB-binding protein expression sensitizes endothelial cells to serum-deprived apoptosis: important role of nitric oxide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endothelium-derived nitric oxide (NO) is a cytoprotective molecule to prevent endothelial cells (ECs) from apoptosis. CREB-binding protein (CBP) is involved in the apoptotic pathway in several tumor cells, however, little is known whether CBP is associated with apoptosis in ECs and the apoptotic effect of CBP on ECs is regulated by NO. Therefore, the purpose of the present study was to investigate whether silencing CBP expression could affect the sensitivity of ECs toward apoptotic stimuli and determined the role of NO. In this study, we found that when CBP expression was silenced by RNA interference, ECs were more prone to apoptosis under serum deprivation, whereas the apoptosis was not significantly induced in the serum-containing condition. The increased apoptosis is paralleled by a reduction of NO, and the apoptosis was reversed by NO donors, suggesting an important role of NO. Furthermore, CBP silencing decreased NO production by downregulating the endothelial NO synthase (eNOS) expression in a dose-dependent manner. These results indicated that CBP silencing is associated with decreased eNOS expression and NO production, and therefore concomitantly increased the sensitivity of ECs toward apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwartz SM, Gajdusek CM, Selden SC III (1981) Vascular wall growth control: the role of the endothelium. Arteriosclerosis 1:107–126

    PubMed  Google Scholar 

  2. Chen H, Ikeda U, Shimpo M, Shimada K (2000) Direct effects of statins on cells primarily involved in atherosclerosis. Hypertens Res 23:187–192

    Article  CAS  PubMed  Google Scholar 

  3. Dimmeler S, Zeiher AM (2000) Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87:434–439

    CAS  PubMed  Google Scholar 

  4. Choy JC, Granville DJ, Hunt DW, McManus BM (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33:1673–1690

    Article  CAS  PubMed  Google Scholar 

  5. Hogg N, Browning J, Howard T, Winterford C, Fitzpatrick D, Gobé G (1997) Apoptosis in vascular endothelial cells caused by serum deprivation, oxidative stress and transforming growth factor-beta. Endothelium 7:35–49

    Google Scholar 

  6. Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM (2001) Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem 276:10627–10633

    Article  CAS  PubMed  Google Scholar 

  7. Asada S, Takahashi T, Isodono K, Adachi A, Imoto H, Ogata T, Ueyama T, Matsubara H, Oh H (2008) Downregulation of Dicer expression by serum withdrawal sensitizes human endothelial cells to apoptosis. Am J Physiol Heart Circ Physiol 295:H2512–H2521

    Article  CAS  PubMed  Google Scholar 

  8. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997) Angiotensin II induces apoptosis of human endothelial cells: protective effect of nitric oxide. Circ Res 81:970–976

    CAS  PubMed  Google Scholar 

  9. Ceneviva GD, Tzeng E, Hoyt DG, Yee E, Gallagher A, Engelhardt JF, Kim YM, Billiar TR, Watkins SA, Pitt BR (1998) Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells. Am J Physiol 275:L717–L728

    CAS  PubMed  Google Scholar 

  10. Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185:601–607

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424

    Article  CAS  PubMed  Google Scholar 

  12. Kawashima S, Yokoyama M (2004) Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 24:998–1005

    Article  CAS  PubMed  Google Scholar 

  13. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    Article  CAS  PubMed  Google Scholar 

  14. Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505–13508

    CAS  PubMed  Google Scholar 

  15. Giordano A, Avantaggiati ML (1999) p300 and CBP: partners for life and death. J Cell Physiol 181:218–230

    Article  CAS  PubMed  Google Scholar 

  16. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638

    Article  CAS  PubMed  Google Scholar 

  17. Krämer OH, Baus D, Knauer SK, Stein S, Jäger E, Stauber RH, Grez M, Pfitzner E, Heinzel T (2006) Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20:473–485

    Article  PubMed  Google Scholar 

  18. Grossman SR (2001) p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem 268:2773–2778

    Article  CAS  PubMed  Google Scholar 

  19. Kawahara K, Kawabata H, Aratani S, Nakajima T (2003) Hyper nuclear acetylation (HNA) in proliferation, differentiation and apoptosis. Ageing Res Rev 2:287–297

    Article  CAS  PubMed  Google Scholar 

  20. Suschek C, Kolb H, Kolb-Bachofen V (1997) Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells. Br J Pharmacol 122:1502–1508

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann J, Haendeler J, Aicher A, Rössig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Jiang H, Xu L, Zhu LH, Wang L, Wen HZ, Hu XR (2008) Dysregulation of CREB binding protein triggers thrombin-induced proliferation of vascular smooth muscle cells. Mol Cell Biochem 315:123–130

    Article  CAS  PubMed  Google Scholar 

  23. Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114:2363–2373

    CAS  PubMed  Google Scholar 

  24. Blobel GA (2002) CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol 71:545–556

    CAS  PubMed  Google Scholar 

  25. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    CAS  PubMed  Google Scholar 

  26. Eckner R (1996) p300 and CBP as transcriptional regulators and targets of oncogenic events. Biol Chem 377:685–688

    CAS  PubMed  Google Scholar 

  27. Foulds CE, Nelson ML, Blaszczak AG, Graves BJ (2004) Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Mol Cell Biol 24:10954–10964

    Article  CAS  PubMed  Google Scholar 

  28. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, Farina A, Martinez E (2005) Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol 25:10220–10234

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Bacanamwo M, Harrison DG (2008) Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J Biol Chem 283:16293–16298

    Article  CAS  PubMed  Google Scholar 

  30. Scarabelli TM, Stephanou A, Pasini E, Comini L, Raddino R, Knight RA, Latchman DS (2002) Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res 90:745–748

    Article  CAS  PubMed  Google Scholar 

  31. Kim YM, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256

    CAS  PubMed  Google Scholar 

  32. Chanvorachote P, Nimmannit U, Wang L, Stehlik C, Lu B, Azad N, Rojanasakul Y (2005) Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 280:42044–42050

    Article  CAS  PubMed  Google Scholar 

  33. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA Jr, García-Cardeña G, Jain MK (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315

    Article  CAS  PubMed  Google Scholar 

  34. Searles CD (2006) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol 291:C803–C816

    Article  CAS  PubMed  Google Scholar 

  35. Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384:641–643

    Article  CAS  PubMed  Google Scholar 

  36. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This project was supported by National Science Foundation of China NSDC No. 30770849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Jiang, H., Zhu, Lh. et al. Downregulation of CREB-binding protein expression sensitizes endothelial cells to serum-deprived apoptosis: important role of nitric oxide. Mol Cell Biochem 337, 159–166 (2010). https://doi.org/10.1007/s11010-009-0295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0295-y

Keywords

Navigation