Skip to main content
Log in

Fructose and moderately high dietary salt-induced hypertension: prevention by a combination of N-acetylcysteine and l-arginine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diets containing 8% salt or 4% fructose (FR) cause insulin resistance and increase tissue methylglyoxal and advanced glycation end products (AGEs), platelet cytosolic-free calcium, and systolic blood pressure (SBP) in rats. In WKY rats, we have shown that moderately high salt, 4% NaCl (MHS) alone in diet does not cause hypertension, and when given along with 4% FR it does not have an additive effect. N-acetylcysteine (NAC) or l-arginine (ARG), treatment alone does not prevent hypertension in this model. The objectives of this study were to investigate the effect of NAC plus ARG in diet on SBP, platelet cytosolic-free calcium in a MHS + FR model, and to measure the plasma levels of methylglyoxal and the AGE, methylglyoxal-derived hydroimidazolone (MGH). At 7 weeks of age, WKY rats were divided into three groups: control group was given regular rat chow (0.7% NaCl) and water; MHS + FR group, diet containing 4% NaCl and 4% FR in drinking water; and MHS + FR + NAC + ARG group, MHS diet supplemented with 1.5% N-acetylcysteine (NAC) and 1.5% l-arginine (ARG), and 4% FR in drinking water, and followed for 6 weeks. NAC + ARG prevented the increase in platelet cytosolic-free calcium and SBP in MHS + FR treated rats. There was no difference in mean values of plasma methylglyoxal and MGH among the groups. In conclusion, NAC + ARG treatment is effective in preventing hypertension in a moderately high salt + FR-induced animal model. Plasma methylglyoxal and MGH may not represent tissue modification or, alternatively, other tissue AGEs, derived from methylglyoxal or other aldehydes, may be involved in hypertension in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Society of Hypertension (2005) Background information on high blood pressure (hypertension), pp 1 http://www.ish-world.com/default.aspx?BackgroundInformation. Accessed 16 Mar 2009

  2. Ferrannini E, Buzzigoli G, Bonadonna R et al (1987) Insulin resistance in essential hypertension. N Engl J Med 317:350–357

    CAS  PubMed  Google Scholar 

  3. Reaven GM (1991) Insulin resistance, hyperinsulinemia, and hypertriglyceridemia in the etiology and clinical course of hypertension. Am J Med 90:7S–12S

    Article  CAS  PubMed  Google Scholar 

  4. Sagar S, Kallo IJ, Kaul N et al (1992) Oxygen free radicals in essential hypertension. Mol Cell Biochem 111:103–108

    Article  CAS  PubMed  Google Scholar 

  5. Kumar KV, Das UN (1993) Are free radicals involved in the pathobiology of human essential hypertension? Free Radic Res Commun 19:59–66

    Article  CAS  PubMed  Google Scholar 

  6. Taddei S, Virdis A, Ghiadoni L et al (1998) Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97:2222–2229

    CAS  PubMed  Google Scholar 

  7. Hill GS, Heudes D, Jacquot C et al (2006) Morphometric evidence for impairment of renal autoregulation in advanced essential hypertension. Kidney Int 69:823–831

    Article  CAS  PubMed  Google Scholar 

  8. Vasdev S, Ford CA, Longerich L et al (1998) Role of aldehydes in fructose induced hypertension. Mol Cell Biochem 181:1–9

    Article  CAS  PubMed  Google Scholar 

  9. Vasdev S, Ford CA, Parai S et al (2000) Dietary lipoic acid supplementation prevents fructose-induced hypertension in rats. Nutr Metab Cardiovasc Dis 10:339–346

    CAS  PubMed  Google Scholar 

  10. Midaoui AE, Elimadi A, Wu L et al (2003) Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production. Am J Hypertens 16:173–179

    Article  PubMed  Google Scholar 

  11. Hodges RE, Rebello T (1983) Carbohydrates and blood pressure. Ann Intern Med 98:838–841

    CAS  PubMed  Google Scholar 

  12. Hwang IS, Ho H, Hoffman BB et al (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10:512–516

    CAS  PubMed  Google Scholar 

  13. Rebello T, Hodges RE, Smith JL (1983) Short-term effects of various sugars on antinatriuresis and blood pressure changes in normotensive young men. Am J Clin Nutr 38:84–94

    CAS  PubMed  Google Scholar 

  14. Appel LJ, Sacks FM, Carey VJ et al (2005) Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 294:2455–2464

    Article  CAS  PubMed  Google Scholar 

  15. Israel KD, Michaelis OE IV, Reiser S et al (1983) Serum uric acid, inorganic phosphorus, and glutamic-oxalacetic transaminase and blood pressure in carbohydrate-sensitive adults consuming three different levels of sucrose. Ann Nutr Metab 27:425–435

    Article  CAS  PubMed  Google Scholar 

  16. Sacks FM, Svetkey LP, Vollmer WM et al (2001) Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 344:3–10

    Article  CAS  PubMed  Google Scholar 

  17. Vasdev S, Gill V, Longerich L et al (2003) Salt-induced hypertension in WKY rats: prevention by alpha-lipoic acid supplementation. Mol Cell Biochem 254:319–326

    Article  CAS  PubMed  Google Scholar 

  18. Vasdev S, Gill V, Parai S et al (2005) Dietary lipoic acid supplementation attenuates hypertension in Dahl salt sensitive rats. Mol Cell Biochem 275:135–141

    Article  CAS  PubMed  Google Scholar 

  19. Preuss MB, Preuss HG (1980) The effects of sucrose and sodium on blood pressures in various substrains of Wistar rats. Lab Invest 43:101–107

    CAS  PubMed  Google Scholar 

  20. Gonzalez-Albarran O, Ruilope LM, Villa E et al (1998) Salt sensitivity: concept and pathogenesis. Diabetes Res Clin Pract 39(Suppl):S15–S26

    Article  PubMed  Google Scholar 

  21. Weinberger MH (1996) Salt sensitivity of blood pressure in humans. Hypertension 27:481–490

    CAS  PubMed  Google Scholar 

  22. Ogihara T, Asano T, Ando K et al (2002) High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension 40:83–89

    Article  CAS  PubMed  Google Scholar 

  23. Fuenmayor N, Moreira E, Cubeddu LX (1998) Salt sensitivity is associated with insulin resistance in essential hypertension. Am J Hypertens 11:397–402

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Fujii S, Igarashi J et al (2004) Effects of thiol antioxidant on reduced nicotinamide adenine dinucleotide phosphate oxidase in hypertensive Dahl salt-sensitive rats. Free Radic Biol Med 37:1813–1820

    Article  CAS  PubMed  Google Scholar 

  25. Song D, Hutchings S, Pang CC (2005) Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol 508:205–210

    Article  CAS  PubMed  Google Scholar 

  26. Trolliet MR, Rudd MA, Loscalzo J (2001) Oxidative stress and renal dysfunction in salt-sensitive hypertension. Kidney Blood Press Res 24:116–123

    Article  CAS  PubMed  Google Scholar 

  27. Kamata K, Yamashita K (1999) Insulin resistance and impaired endothelium-dependent renal vasodilatation in fructose-fed hypertensive rats. Res Commun Mol Pathol Pharmacol 103:195–210

    CAS  PubMed  Google Scholar 

  28. Blouet C, Mariotti F, Azzout-Marniche D et al (2007) Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic Biol Med 42:1089–1097

    Article  CAS  PubMed  Google Scholar 

  29. Bragulat E, de la Sierra A, Antonio MT et al (2001) Endothelial dysfunction in salt-sensitive essential hypertension. Hypertension 37:444–448

    CAS  PubMed  Google Scholar 

  30. Vasdev S, Gill V, Singal P (2007) Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic implications. Cell Biochem Biophys 49:48–63

    Article  CAS  PubMed  Google Scholar 

  31. Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14:287–371

    Article  CAS  PubMed  Google Scholar 

  32. Degenhardt TP, Thorpe SR, Baynes JW (1998) Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand) 44:1139–1145

    CAS  Google Scholar 

  33. Morgan PE, Dean RT, Davies MJ (2002) Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch Biochem Biophys 403:259–269

    Article  CAS  PubMed  Google Scholar 

  34. Zeng J, Dunlop RA, Rodgers KJ et al (2006) Evidence for inactivation of cysteine proteases by reactive carbonyls via glycation of active site thiols. Biochem J 398:197–206

    Article  CAS  PubMed  Google Scholar 

  35. Jia X, Olson DJ, Ross AR et al (2006) Structural and functional changes in human insulin induced by methylglyoxal. FASEB J 20:1555–1557

    Article  CAS  PubMed  Google Scholar 

  36. Lee HJ, Howell SK, Sanford RJ et al (2005) Methylglyoxal can modify GAPDH activity and structure. Ann N Y Acad Sci 1043:135–145

    Article  CAS  PubMed  Google Scholar 

  37. Collison KS, Parhar RS, Saleh SS et al (2002) RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J Leukoc Biol 71:433–444

    CAS  PubMed  Google Scholar 

  38. Kislinger T, Tanji N, Wendt T et al (2001) Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 21:905–910

    CAS  PubMed  Google Scholar 

  39. Yan SD, Schmidt AM, Anderson GM et al (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897

    CAS  PubMed  Google Scholar 

  40. Chen S, Cohen MP, Lautenslager GT et al (2001) Glycated albumin stimulates TGF-beta 1 production and protein kinase C activity in glomerular endothelial cells. Kidney Int 59:673–681

    Article  CAS  PubMed  Google Scholar 

  41. Cohen MP, Shea E, Chen S et al (2003) Glycated albumin increases oxidative stress, activates NF-kappa B and extracellular signal-regulated kinase (ERK), and stimulates ERK-dependent transforming growth factor-beta 1 production in macrophage RAW cells. J Lab Clin Med 141:242–249

    Article  CAS  PubMed  Google Scholar 

  42. Vasdev S, Mian T, Ford CA et al (1996) Role of endogenous aldehydes in spontaneously hypertensive and disulfiram-induced hypertensive rats. Nutr Metab Cardiovasc Dis 6:130–140

    CAS  Google Scholar 

  43. Wang X, Jia X, Chang T et al (2008) Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens 26:765–772

    Article  CAS  PubMed  Google Scholar 

  44. Wang X, Chang T, Jiang B et al (2007) Attenuation of hypertension development by aminoguanidine in spontaneously hypertensive rats: role of methylglyoxal. Am J Hypertens 20:629–636

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Desai K, Chang T et al (2005) Vascular methylglyoxal metabolism and the development of hypertension. J Hypertens 23:1565–1573

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Desai K, Clausen JT et al (2004) Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney Int 66:2315–2321

    Article  CAS  PubMed  Google Scholar 

  47. Wu L, Juurlink BH (2002) Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 39:809–814

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed N, Thornalley PJ (2005) Peptide mapping of human serum albumin modified minimally by methylglyoxal in vitro and in vivo. Ann N Y Acad Sci 1043:260–266

    Article  CAS  PubMed  Google Scholar 

  49. Park YS, Koh YH, Takahashi M et al (2003) Identification of the binding site of methylglyoxal on glutathione peroxidase: methylglyoxal inhibits glutathione peroxidase activity via binding to glutathione binding sites Arg 184 and 185. Free Radic Res 37:205–211

    Article  CAS  PubMed  Google Scholar 

  50. Thornalley PJ, Battah S, Ahmed N et al (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    Article  CAS  PubMed  Google Scholar 

  51. Karachalias N, Babaei-Jadidi R, Ahmed N et al (2003) Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochem Soc Trans 31:1423–1425

    Article  CAS  PubMed  Google Scholar 

  52. Jia X, Wu L (2007) Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. Mol Cell Biochem 306:133–139

    Article  CAS  PubMed  Google Scholar 

  53. Xu B, Chibber R, Ruggiero D et al (2003) Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J 17:1289–1291

    Article  CAS  PubMed  Google Scholar 

  54. Leoncini G, Maresca M, Bonsignore A (1980) The effect of methylglyoxal on the glycolytic enzymes. FEBS Lett 117:17–18

    Article  CAS  PubMed  Google Scholar 

  55. Jan CR, Chen CH, Wang SC et al (2005) Effect of methylglyoxal on intracellular calcium levels and viability in renal tubular cells. Cell Signal 17:847–855

    Article  CAS  PubMed  Google Scholar 

  56. Wu L (2005) The pro-oxidant role of methylglyoxal in mesenteric artery smooth muscle cells. Can J Physiol Pharmacol 83:63–68

    Article  CAS  PubMed  Google Scholar 

  57. Vasdev S, Ford CA, Longerich L et al (1998) Aldehyde induced hypertension in rats: prevention by N-acetylcysteine. Artery 23:10–36

    CAS  PubMed  Google Scholar 

  58. Vasdev S, Gill V, Parai S et al (2005) Dietary vitamin e supplementation attenuates hypertension in Dahl salt-sensitive rats. J Cardiovasc Pharmacol Ther 10:103–111

    Article  CAS  PubMed  Google Scholar 

  59. Vasdev S, Gill V, Parai S et al (2007) Fructose-induced hypertension in Wistar-Kyoto rats: interaction with moderately high dietary salt. Can J Physiol Pharmacol 85:413–421

    Article  CAS  PubMed  Google Scholar 

  60. Tian N, Rose RA, Jordan S et al (2006) N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. J Hypertens 24:2263–2270

    Article  CAS  PubMed  Google Scholar 

  61. Martina V, Masha A, Gigliardi VR et al (2008) Long-term N-acetylcysteine and L-arginine administration reduces endothelial activation and systolic blood pressure in hypertensive patients with type 2 diabetes. Diabetes Care 31:940–944

    Article  CAS  PubMed  Google Scholar 

  62. Nagase S, Takemura K, Ueda A et al (1997) A novel nonenzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D- or L-arginine. Biochem Biophys Res Commun 233:150–153

    Article  CAS  PubMed  Google Scholar 

  63. Wascher TC, Graier WF, Dittrich P et al (1997) Effects of low-dose L-arginine on insulin-mediated vasodilatation and insulin sensitivity. Eur J Clin Invest 27:690–695

    Article  CAS  PubMed  Google Scholar 

  64. Lubec B, Hayn M, Kitzmuller E et al (1997) L-Arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med 22:355–357

    Article  CAS  PubMed  Google Scholar 

  65. Ammon HP, Muller PH, Eggstein M et al (1992) Increase in glucose consumption by acetylcysteine during hyperglycemic clamp. A study with healthy volunteers. Arzneimittelforschung 42:642–645

    CAS  PubMed  Google Scholar 

  66. Piatti PM, Monti LD, Valsecchi G et al (2001) Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 24:875–880

    Article  CAS  PubMed  Google Scholar 

  67. Xia Z, Liu M, Wu Y et al (2006) N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur J Pharmacol 550:134–142

    Article  CAS  PubMed  Google Scholar 

  68. Pieper GM, Siebeneich W (1998) Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction. J Cardiovasc Pharmacol 32:101–105

    Article  CAS  PubMed  Google Scholar 

  69. Lekakis JP, Papathanassiou S, Papaioannou TG et al (2002) Oral L-arginine improves endothelial dysfunction in patients with essential hypertension. Int J Cardiol 86:317–323

    Article  PubMed  Google Scholar 

  70. Zhou MS, Kosaka H, Tian RX et al (2001) L-Arginine improves endothelial function in renal artery of hypertensive Dahl rats. J Hypertens 19:421–429

    Article  CAS  PubMed  Google Scholar 

  71. Han Y, Randell E, Vasdev S et al (2007) Plasma methylglyoxal and glyoxal are elevated and related to early membrane alteration in young, complication-free patients with Type 1 diabetes. Mol Cell Biochem 305:123–131

    Article  CAS  PubMed  Google Scholar 

  72. Han Y, Randell E, Vasdev S et al (2009) Plasma advanced glycation endproduct, methylglyoxal-derived hydroimidazolone is elevated in young, complication-free patients with Type 1 diabetes. Clin Biochem 42(7–8):562–569

    Article  CAS  PubMed  Google Scholar 

  73. Erne P, Bolli P, Burgisser E et al (1984) Correlation of platelet calcium with blood pressure. Effect of antihypertensive therapy. N Engl J Med 310:1084–1088

    CAS  PubMed  Google Scholar 

  74. Kedziora-Kornatowska K, Czuczejko J, Pawluk H et al (2004) The markers of oxidative stress and activity of the antioxidant system in the blood of elderly patients with essential arterial hypertension. Cell Mol Biol Lett 9:635–641

    CAS  PubMed  Google Scholar 

  75. Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    Article  CAS  PubMed  Google Scholar 

  76. Vasdev S, Ford CA, Parai S et al (2001) Dietary vitamin C supplementation lowers blood pressure in spontaneously hypertensive rats. Mol Cell Biochem 218:97–103

    Article  CAS  PubMed  Google Scholar 

  77. Bulteau AL, Verbeke P, Petropoulos I et al (2001) Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem 276:45662–45668

    Article  CAS  PubMed  Google Scholar 

  78. DeGroot J, Verzijl N, Budde M et al (2001) Accumulation of advanced glycation end products decreases collagen turnover by bovine chondrocytes. Exp Cell Res 266:303–310

    Article  CAS  PubMed  Google Scholar 

  79. Baumann M, Stehouwer C, Scheijen J et al (2008) N epsilon-(carboxymethyl)lysine during the early development of hypertension. Ann N Y Acad Sci 1126:201–204

    Article  CAS  PubMed  Google Scholar 

  80. McNulty M, Mahmud A, Feely J (2007) Advanced glycation end-products and arterial stiffness in hypertension. Am J Hypertens 20:242–247

    Article  CAS  PubMed  Google Scholar 

  81. Schauenstein E, Esterbauer H, Zollner H (1977) Aldehydes in biological systems. In: Lagnado JR (ed) Aldehydes in biological systems, their natural occurrence and biological activities. Pion Limited, London, UK, pp 1–7

    Google Scholar 

  82. Mostafa AA, Randell EW, Vasdev SC et al (2007) Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes. Mol Cell Biochem 302:35–42

    Article  CAS  PubMed  Google Scholar 

  83. Anacardio R, Cantalini MG, De Angelis F et al (1997) Quantification of S-carboxymethyl-(R)-cysteine in human plasma by high-performance ion-exchange liquid chromatography/atmospheric pressure ionization mass spectrometry. J Mass Spectrom 32:388–394

    Article  CAS  PubMed  Google Scholar 

  84. Zeng J, Davies MJ (2005) Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins. Chem Res Toxicol 18:1232–1241

    Article  CAS  PubMed  Google Scholar 

  85. Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25:275–281

    Article  CAS  PubMed  Google Scholar 

  86. Dargel R (1992) Lipid peroxidation—a common pathogenetic mechanism? Exp Toxicol Pathol 44:169–181

    CAS  PubMed  Google Scholar 

  87. O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662

    Article  PubMed  Google Scholar 

  88. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  89. Sayre LM, Lin D, Yuan Q et al (2006) Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab Rev 38:651–675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Canadian Institutes of Health Research Regional Partnership Program and the Janeway Foundation for funding to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Vasdev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasdev, S., Gill, V.D., Randell, E. et al. Fructose and moderately high dietary salt-induced hypertension: prevention by a combination of N-acetylcysteine and l-arginine. Mol Cell Biochem 337, 9–16 (2010). https://doi.org/10.1007/s11010-009-0281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0281-4

Keywords

Navigation