Skip to main content
Log in

Occurrence of an anomalous endocytic compartment in fibroblasts from Sandhoff disease patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sandhoff disease (SD) is a lysosomal storage disorder due to mutations in the gene encoding for the β-subunit of β-hexosaminidase, that result in β-hexosaminidase A (αβ) and β-hexosaminidase B (ββ) deficiency. This leads to the storage of GM2 ganglioside in endosomes and lysosomes, which ends in a progressive neurodegeneration. Currently, very little is known about the biochemical pathways leading from GM2 ganglioside accumulation to pathogenesis. Defects in transport and sorting by the endosomal–lysosomal system have been described for several lysosomal storage disorders. Here, we have investigated the endosomal–lysosomal compartment in fibroblasts from SD patients and observed that both late endosomes and lysosomes, but not early endosomes, have a higher density in comparison with normal fibroblasts. Moreover, Sandhoff fibroblasts have an intracellular distribution of terminal endocytic organelles that differs from the characteristic perinuclear punctate pattern observed in normal fibroblasts and endocytic vesicles also appear larger. These findings reveal the occurrence of an alteration in the terminal endocytic organelles of Sandhoff fibroblasts, suggesting an involvement of this compartment in the disruption of cell metabolic and signalling pathways and in the onset of the pathological state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stoscheck CM, Carpenter G (1984) Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts. J Cell Biol 98:1048–1053

    Article  CAS  PubMed  Google Scholar 

  2. Trejo J, Hammes SR, Coughlin SR (1998) Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci USA 95:3698–3702

    Article  Google Scholar 

  3. Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131

    Article  CAS  PubMed  Google Scholar 

  4. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106:157–169

    Article  CAS  PubMed  Google Scholar 

  5. Cataldo AM, Peterhoff CM, Troncoso JC et al (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286

    CAS  PubMed  Google Scholar 

  6. Scriver CR, Beaudet AL, Sly WS, Valle DD (eds) (2001) Lysosomal disorders. The metabolic and molecular bases of inherited disease, 8th edn, vol III. McGraw-Hill, New York, pp 3371–3894

  7. Jeyakumar M, Dwek RA, Butters TD, Platt FM (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6:713–725

    PubMed  Google Scholar 

  8. Ginzburg L, Kacher Y, Futerman AH (2004) The pathogenesis of glycosphingolipid storage disorder. Semin Cell Dev Bio 15:417–431

    Article  CAS  Google Scholar 

  9. Bahr BA, Bendiske J (2002) The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83:481–489

    Article  CAS  PubMed  Google Scholar 

  10. Ivleva TS, Ogloblina TA, Litinskaya LL, Wiederschain GY (1991) Estimation and comparison of lysosomal and cytoplasmic pH of human fibroblasts from healthy donors and patients with lysosomal storage diseases. Biomed Sci 2:398–402

    CAS  PubMed  Google Scholar 

  11. Bach G, Chen CS, Pagano RE (1999) Elevated lysosomal pH in Mucolipidosis type IV cells. Clin Chim Acta 280:173–179

    Article  CAS  PubMed  Google Scholar 

  12. Schmid JA, Mach L, Paschke E, Glössl J (1999) Accumulation of sialic acid in endocytic compartments interferes with the formation of mature lysosomes. J Biol Chem 274:19063–19071

    Article  CAS  PubMed  Google Scholar 

  13. Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y et al (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281:7294–7301

    Article  CAS  PubMed  Google Scholar 

  14. Pagano RE (2003) Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 358:885–891 Review

    Article  CAS  PubMed  Google Scholar 

  15. Sillence DJ, Platt FM (2004) Glycosphingolipids in endocytic membrane transport. Semin Cell Dev Biol 15:409–416

    Article  CAS  PubMed  Google Scholar 

  16. Vruchte D, Lloyd-Evans E, Vldman RJ et al (2004) Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport. J Biol Chem 279:26167–26175

    Article  Google Scholar 

  17. Martino S, Emiliani C, Tancini B et al (2002) Absence of metabolic cross-correction in Tay-Sachs cells: implications for gene therapy. J Biol Chem 277:20177–20184

    Article  CAS  PubMed  Google Scholar 

  18. Mahuran DJ (1999) Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta 1455:105–138

    CAS  PubMed  Google Scholar 

  19. Mencarelli S, Cavalieri C, Magini A et al (2005) Identification of plasma membrane associated β-Hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579:5501–5506

    Article  CAS  PubMed  Google Scholar 

  20. Magini A, Mencarelli S, Tancini B et al (2008) Identification and characterization of mature beta-hexosaminidases associated with human placenta lysosomal membrane. Biosci Rep 28:229–237

    CAS  PubMed  Google Scholar 

  21. Bifsha P, Landry K, Ashmarina L et al (2007) Altered gene expression in cells from patients with lysosomal storage disorders suggests impairment of the ubiquitin pathway. Cell Death Differ 14:511–523

    Article  CAS  PubMed  Google Scholar 

  22. Connolly GP (1998) Fibroblast models of neurological disorders: fluorescence measurement studies. Trends Pharmacol Sci 19:171–177

    Article  CAS  PubMed  Google Scholar 

  23. Zampieri S, Filocamo M, Buratti E et al (2009) Molecular and functional analysis of the HEXB gene in Italian patients affected with Sandhoff disease: identification of six novel alleles. Neurogenetics 10:49–58

    Google Scholar 

  24. Yeyeodu S, Ahn K, Madden V et al (2000) Procathepsin L self-association as a mechanism for selective secretion. Traffic 1:724–737

    Article  CAS  PubMed  Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  26. Emiliani C, Beccari T, Tabilio A et al (1990) An enzyme with properties similar to those of beta N-acetylhexosaminidase S is expressed in the promyelocytic cell line HL-60. Biochem J 267:111–117

    CAS  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  28. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331

    Article  CAS  PubMed  Google Scholar 

  29. Keesey J (ed) (1987) Biochemica information, 1st edn. Boehringer Mannheim Biochemicals, Indianapolis, pp 19–20

  30. Putter J, Becker R (1983) Peroxidase. In: Bergmeyer HW (ed) Methods of enzymatic analysis, vol III, 3rd edn. Verlag-Chemie, Weinheim, Germany, pp 286–293

    Google Scholar 

  31. Martinez O, Goud B (1998) Rab proteins. Biochim Biophys Acta 1404:101–112 Review

    Article  CAS  PubMed  Google Scholar 

  32. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  CAS  PubMed  Google Scholar 

  33. Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging function for lysosomal membrane proteins. Trends Cell Biol 13:137–145

    Article  CAS  PubMed  Google Scholar 

  34. D’Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H (1982) Molecular defect in combined beta-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci USA 79:4535–4539

    Article  PubMed  Google Scholar 

  35. Mu F-T (1995) EEA1, an early endosome-associated protein. J Biol Chem 270:13503–13511

    Article  CAS  PubMed  Google Scholar 

  36. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    CAS  PubMed  Google Scholar 

  37. Rosenfeld JL, Moore RH, Zimmer KP et al (2001) Lysosome proteins are redistributed during expression of a GTP-hydrolysis-defective rab5a. J Cell Sci 114:4499–4508

    CAS  PubMed  Google Scholar 

  38. Lebrand C, Corti M, Goodson H et al (2002) Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J 21:1289–1300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by COFIN-PRIN (Cofinanziamento-Progetto di Ricerca di Interesse Nazionale) and FIRB (Fondo per gli Investimenti della Ricerca di Base) grants to C.E. This work was also supported by Fondazione Cassa di Risparmio di Perugia, Grant 2008.021.375 to C.E. We thank the “Diagnosi PrePostnatale Malattie Metaboliche” Laboratory (G.Gaslini Institute) for providing us with specimens from the “Cell line and DNA bank from patients affected by Genetic diseases” Biobank- Telethon Genetic Biobank Network (project no. GTB07001A). We thank Dr. Maria Ragano Caracciolo for the valuable comments and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Emiliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tancini, B., Magini, A., Latterini, L. et al. Occurrence of an anomalous endocytic compartment in fibroblasts from Sandhoff disease patients. Mol Cell Biochem 335, 273–282 (2010). https://doi.org/10.1007/s11010-009-0277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0277-0

Keywords

Navigation